Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 291(8): 4236-46, 2016 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-26742839

RESUMO

Tetherin, also known as bone marrow stromal antigen 2 (BST-2), inhibits the release of a wide range of enveloped viruses, including human immunodeficiency virus, type 1 (HIV-1) by directly tethering nascent virions to the surface of infected cells. The HIV-1 accessary protein Vpu counteracts tetherin restriction via sequestration, down-regulation, and/or displacement mechanisms to remove tetherin from sites of virus budding. However, the exact mechanism of Vpu-mediated antagonism of tetherin restriction remains to be fully understood. Here we report a novel role for the actin cross-linking regulator filamin A (FLNa) in Vpu anti-tetherin activities. We demonstrate that FLNa associates with tetherin and that FLNa modulates tetherin turnover. FLNa deficiency was found to enhance cell surface and steady-state levels of tetherin expression. In contrast, we observed that overexpression of FLNa reduced tetherin expression levels both on the plasma membrane and in intracellular compartments. Although FLNb shows high amino acid sequence similarity with FLNa, we reveal that only FLNa, but not FLNb, plays an essential role in tetherin turnover. We further showed that FLNa deficiency inhibited Vpu-mediated enhancement of virus release through interfering with the activity of Vpu to down-regulate cellular tetherin. Taken together, our studies suggest that Vpu hijacks the FLNa function in the modulation of tetherin to neutralize the antiviral factor tetherin. These findings may provide novel strategies for the treatment of HIV-1 infection.


Assuntos
Antígenos CD/biossíntese , Filaminas/metabolismo , Regulação da Expressão Gênica , HIV-1/metabolismo , Proteínas do Vírus da Imunodeficiência Humana/metabolismo , Proteínas Virais Reguladoras e Acessórias/metabolismo , Liberação de Vírus/fisiologia , Antígenos CD/genética , Filaminas/genética , Proteínas Ligadas por GPI/biossíntese , Proteínas Ligadas por GPI/genética , Células HEK293 , HIV-1/genética , Células HeLa , Proteínas do Vírus da Imunodeficiência Humana/genética , Humanos , Proteínas Virais Reguladoras e Acessórias/genética
2.
J Virol ; 86(20): 11242-53, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22875976

RESUMO

Adaptor protein complex 3 (AP-3) is a heterotetramer that is involved in signal-mediated protein sorting to endosomal-lysosomal organelles. AP-3 deficiency in humans, induced by mutations in the AP3B1 gene, which encodes the ß3A subunit of the AP-3 complex, results in Hermansky-Pudlak syndrome 2 (HPS2), which is a rare genetic disorder with defective lysosome-related organelles. In a previous study, we identified the AP-3 complex as an important contributor to HIV-1 assembly and release. We hypothesized that cells from patients affected by HPS2 should demonstrate abnormalities of HIV-1 assembly. Here we report that HIV-1 particle assembly and release are indeed diminished in HPS2 fibroblast cultures. Transient or stable expression of the full-length wild-type ß3A subunit in HPS2 fibroblasts restored the impaired virus assembly and release. In contrast, virus-like particle release mediated by MA-deficient Gag mutants lacking the AP-3 binding site was not altered in HPS2 cells, indicating that the MA domain serves as the major viral determinant required for the recruitment of the AP-3 complex. AP-3 deficiency decreased HIV-1 Gag localization at the plasma membrane and late endosomes and increased the accumulation of HIV-1 Gag at an intermediate step between early and late endosomes. Blockage of the clathrin-mediated endocytic pathway in HPS2 cells did not reverse the inhibited virus assembly and release imposed by the AP-3 deficiency. These results demonstrate that the intact and stable AP-3 complex is required for HIV-1 assembly and release, and the involvement of the AP-3 complex in late stages of the HIV-1 replication cycle is independent of clathrin-mediated endocytosis.


Assuntos
Complexo 3 de Proteínas Adaptadoras/metabolismo , Subunidades delta do Complexo de Proteínas Adaptadoras/metabolismo , HIV-1/fisiologia , Síndrome de Hermanski-Pudlak , Montagem de Vírus , Produtos do Gene gag do Vírus da Imunodeficiência Humana/metabolismo , Complexo 3 de Proteínas Adaptadoras/deficiência , Complexo 3 de Proteínas Adaptadoras/genética , Subunidades delta do Complexo de Proteínas Adaptadoras/deficiência , Subunidades delta do Complexo de Proteínas Adaptadoras/genética , Membrana Celular/metabolismo , Membrana Celular/virologia , Células Cultivadas , Clatrina/antagonistas & inibidores , Endocitose , Fibroblastos/virologia , HIV-1/metabolismo , Síndrome de Hermanski-Pudlak/genética , Síndrome de Hermanski-Pudlak/metabolismo , Síndrome de Hermanski-Pudlak/virologia , Humanos , Mutação , Transdução de Sinais , Pele/virologia , Liberação de Vírus/genética , Produtos do Gene gag do Vírus da Imunodeficiência Humana/genética
3.
J Biol Chem ; 286(32): 28498-510, 2011 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-21705339

RESUMO

HIV-1 Gag precursor directs virus particle assembly and release. In a search for Gag-interacting proteins that are involved in late stages of the HIV-1 replication cycle, we performed yeast two-hybrid screening against a human cDNA library and identified the non-muscle actin filament cross-linking protein filamin A as a novel Gag binding partner. The 280-kDa filamin A regulates cortical actin network dynamics and participates in the anchoring of membrane proteins to the actin cytoskeleton. Recent studies have shown that filamin A facilitates HIV-1 cell-to-cell transmission by binding to HIV receptors and coreceptors and regulating their clustering on the target cell surface. Here we report a novel role for filamin A in HIV-1 Gag intracellular trafficking. We demonstrate that filamin A interacts with the capsid domain of HIV-1 Gag and that this interaction is involved in particle release in a productive manner. Disruption of this interaction eliminated Gag localization at the plasma membrane and induced Gag accumulation within internal compartments. Moreover, blocking clathrin-dependent endocytic pathways did not relieve the restriction to particle release induced by filamin A depletion. These results suggest that filamin A is involved in the distinct step of the Gag trafficking pathway. The discovery of the Gag-filamin A interaction may provide a new therapeutic target for the treatment of HIV infection.


Assuntos
Proteínas Contráteis/metabolismo , Infecções por HIV/mortalidade , HIV-1/fisiologia , Proteínas dos Microfilamentos/metabolismo , Montagem de Vírus/fisiologia , Clatrina/genética , Clatrina/metabolismo , Proteínas Contráteis/genética , Endocitose/genética , Filaminas , Biblioteca Gênica , Infecções por HIV/genética , Infecções por HIV/transmissão , HIV-1/patogenicidade , Células HeLa , Humanos , Proteínas dos Microfilamentos/genética , Transporte Proteico/genética , Saccharomyces cerevisiae , Técnicas do Sistema de Duplo-Híbrido , Montagem de Vírus/efeitos dos fármacos , Produtos do Gene gag do Vírus da Imunodeficiência Humana
4.
J Cell Sci ; 123(Pt 19): 3303-15, 2010 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-20826458

RESUMO

A systematic Drosophila forward genetic screen for photoreceptor synaptic transmission mutants identified no-on-and-no-off transient C (nonC) based on loss of retinal synaptic responses to light stimulation. The cloned gene encodes phosphatidylinositol-3-kinase-like kinase (PIKK) Smg1, a regulatory kinase of the nonsense-mediated decay (NMD) pathway. The Smg proteins act in an mRNA quality control surveillance mechanism to selectively degrade transcripts containing premature stop codons, thereby preventing the translation of truncated proteins with dominant-negative or deleterious gain-of-function activities. At the neuromuscular junction (NMJ) synapse, an extended allelic series of Smg1 mutants show impaired structural architecture, with decreased terminal arbor size, branching and synaptic bouton number. Functionally, loss of Smg1 results in a ~50% reduction in basal neurotransmission strength, as well as progressive transmission fatigue and greatly impaired synaptic vesicle recycling during high-frequency stimulation. Mutation of other NMD pathways genes (Upf2 and Smg6) similarly impairs neurotransmission and synaptic vesicle cycling. These findings suggest that the NMD pathway acts to regulate proper mRNA translation to safeguard synapse morphology and maintain the efficacy of synaptic function.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila/fisiologia , Células Fotorreceptoras de Invertebrados/metabolismo , Terminações Pré-Sinápticas/patologia , Proteínas Serina-Treonina Quinases/metabolismo , Vesículas Sinápticas/metabolismo , Animais , Proteínas de Drosophila/genética , Teste de Complementação Genética , Testes Genéticos , Transdução de Sinal Luminoso/genética , Morfogênese/genética , Junção Neuromuscular/fisiologia , Células Fotorreceptoras de Invertebrados/patologia , Terminações Pré-Sinápticas/metabolismo , Proteínas Serina-Treonina Quinases/genética , Retina/crescimento & desenvolvimento , Retina/patologia , Deleção de Sequência/genética , Transmissão Sináptica/genética , Vesículas Sinápticas/genética , Vesículas Sinápticas/patologia
5.
Dis Model Mech ; 3(7-8): 471-85, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20442204

RESUMO

Fragile X syndrome (FXS), resulting solely from the loss of function of the human fragile X mental retardation 1 (hFMR1) gene, is the most common heritable cause of mental retardation and autism disorders, with syndromic defects also in non-neuronal tissues. In addition, the human genome encodes two closely related hFMR1 paralogs: hFXR1 and hFXR2. The Drosophila genome, by contrast, encodes a single dFMR1 gene with close sequence homology to all three human genes. Drosophila that lack the dFMR1 gene (dfmr1 null mutants) recapitulate FXS-associated molecular, cellular and behavioral phenotypes, suggesting that FMR1 function has been conserved, albeit with specific functions possibly sub-served by the expanded human gene family. To test evolutionary conservation, we used tissue-targeted transgenic expression of all three human genes in the Drosophila disease model to investigate function at (1) molecular, (2) neuronal and (3) non-neuronal levels. In neurons, dfmr1 null mutants exhibit elevated protein levels that alter the central brain and neuromuscular junction (NMJ) synaptic architecture, including an increase in synapse area, branching and bouton numbers. Importantly, hFMR1 can, comparably to dFMR1, fully rescue both the molecular and cellular defects in neurons, whereas hFXR1 and hFXR2 provide absolutely no rescue. For non-neuronal requirements, we assayed male fecundity and testes function. dfmr1 null mutants are effectively sterile owing to disruption of the 9+2 microtubule organization in the sperm tail. Importantly, all three human genes fully and equally rescue mutant fecundity and spermatogenesis defects. These results indicate that FMR1 gene function is evolutionarily conserved in neural mechanisms and cannot be compensated by either FXR1 or FXR2, but that all three proteins can substitute for each other in non-neuronal requirements. We conclude that FMR1 has a neural-specific function that is distinct from its paralogs, and that the unique FMR1 function is responsible for regulating neuronal protein expression and synaptic connectivity.


Assuntos
Sequência Conservada/genética , Drosophila melanogaster/metabolismo , Evolução Molecular , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Neurônios/metabolismo , Proteínas de Ligação a RNA/metabolismo , Animais , Animais Geneticamente Modificados , Encéfalo/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citologia , Drosophila melanogaster/genética , Drosophila melanogaster/ultraestrutura , Fertilidade , Proteína do X Frágil da Deficiência Intelectual/genética , Humanos , Masculino , Mutação/genética , Rede Nervosa/metabolismo , Junção Neuromuscular/metabolismo , Espermatogênese , Sinapses/metabolismo , Testículo/metabolismo , Testículo/ultraestrutura
6.
Proc Natl Acad Sci U S A ; 107(7): 3169-74, 2010 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-20133767

RESUMO

Neuropathology involving TAR DNA binding protein-43 (TDP-43) has been identified in a wide spectrum of neurodegenerative diseases collectively named as TDP-43 proteinopathy, including amyotrophic lateral sclerosis (ALS) and frontotemporal lobar dementia (FTLD). To test whether increased expression of wide-type human TDP-43 (hTDP-43) may cause neurotoxicity in vivo, we generated transgenic flies expressing hTDP-43 in various neuronal subpopulations. Expression in the fly eyes of the full-length hTDP-43, but not a mutant lacking its amino-terminal domain, led to progressive loss of ommatidia with remarkable signs of neurodegeneration. Expressing hTDP-43 in mushroom bodies (MBs) resulted in dramatic axon losses and neuronal death. Furthermore, hTDP-43 expression in motor neurons led to axon swelling, reduction in axon branches and bouton numbers, and motor neuron loss together with functional deficits. Thus, our transgenic flies expressing hTDP-43 recapitulate important neuropathological and clinical features of human TDP-43 proteinopathy, providing a powerful animal model for this group of devastating diseases. Our study indicates that simply increasing hTDP-43 expression is sufficient to cause neurotoxicity in vivo, suggesting that aberrant regulation of TDP-43 expression or decreased clearance of hTDP-43 may contribute to the pathogenesis of TDP-43 proteinopathy.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Modelos Animais de Doenças , Drosophila , Neurônios/metabolismo , Degeneração Retiniana/metabolismo , Proteinopatias TDP-43/metabolismo , Animais , Animais Geneticamente Modificados , Humanos , Proteínas Luminescentes/metabolismo , Microscopia Eletrônica de Transmissão , Microscopia de Fluorescência , Corpos Pedunculados/metabolismo , Neurônios/ultraestrutura , Degeneração Retiniana/etiologia , Proteinopatias TDP-43/complicações , Proteína Vermelha Fluorescente
7.
Protein Cell ; 1(3): 267-74, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21203973

RESUMO

Retinitis pigmentosa is a leading cause of blindness and a progressive retinal disorder, affecting millions of people worldwide. This disease is characterized by photoreceptor degeneration, eventually leading to complete blindness. Autosomal dominant (adRP) has been associated with mutations in at least four ubiquitously expressed genes encoding pre-mRNA splicing factors-Prp3, Prp8, Prp31 and PAP1. Biological function of adRP-associated splicing factor genes and molecular mechanisms by which mutations in these genes cause cell-type specific photoreceptor degeneration in humans remain to be elucidated. To investigate the in vivo function of these adRP-associated splicing factor genes, we examined Drosophila in which expression of fly Prp31 homolog was down-regulated. Sequence analyses show that CG6876 is the likely candidate of Drosophila melanogaster Prp31 homolog (DmPrp31). Predicted peptide sequence for CG6876 shows 57% similarity to the Homo sapiens Prp31 protein (HsPrp31). Reduction of the endogenous Prp31 by RNAi-mediated knockdown specifically in the eye leads to reduction of eye size or complete absence of eyes with remarkable features of photoreceptor degeneration and recapitulates the bimodal expressivity of human Prp31 mutations in adRP patients. Such transgenic DmPrp31RNAi flies provide a useful tool for identifying genetic modifiers or interacting genes for Prp31. Expression of the human Prp31 in these animals leads to a partial rescue of the eye phenotype. Our results indicate that the Drosophila CG6876 is the fly ortholog of mammalian Prp31 gene.


Assuntos
Proteínas de Drosophila/fisiologia , Drosophila melanogaster/crescimento & desenvolvimento , Proteínas do Olho/fisiologia , Células Fotorreceptoras de Invertebrados/fisiologia , Sequência de Aminoácidos , Animais , Animais Geneticamente Modificados , Sequência de Bases , Primers do DNA/genética , Proteínas de Drosophila/antagonistas & inibidores , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/fisiologia , Anormalidades do Olho/genética , Proteínas do Olho/antagonistas & inibidores , Proteínas do Olho/genética , Técnicas de Silenciamento de Genes , Genes de Insetos , Humanos , Dados de Sequência Molecular , Proteínas Associadas a Pancreatite , Interferência de RNA , Splicing de RNA , Homologia de Sequência de Aminoácidos
8.
J Cell Sci ; 122(Pt 1): 114-25, 2009 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-19066280

RESUMO

Rolling blackout (RBO) is a Drosophila EFR3 integral membrane lipase. A conditional temperature-sensitive (TS) mutant (rbo(ts)) displays paralysis within minutes following a temperature shift from 25 degrees C to 37 degrees C, an impairment previously attributed solely to blocked synaptic-vesicle exocytosis. However, we found that rbo(ts) displays a strong synergistic interaction with the Syntaxin-1A TS allele syx(3-69), recently shown to be a dominant positive mutant that increases Syntaxin-1A function. At neuromuscular synapses, rbo(ts) showed a strong defect in styryl-FM-dye (FM) endocytosis, and rbo(ts);syx(3-69) double mutants displayed a synergistic, more severe, endocytosis impairment. Similarly, central rbo(ts) synapses in primary brain culture showed severely defective FM endocytosis. Non-neuronal nephrocyte Garland cells showed the same endocytosis defect in tracer-uptake assays. Ultrastructurally, rbo(ts) displayed a specific defect in tracer uptake into endosomes in both neuronal and non-neuronal cells. At the rbo(ts) synapse, there was a total blockade of endosome formation via activity-dependent bulk endocytosis. Clathrin-mediated endocytosis was not affected; indeed, there was a significant increase in direct vesicle formation. Together, these results demonstrate that RBO is required for constitutive and/or bulk endocytosis and/or macropinocytosis in both neuronal and non-neuronal cells, and that, at the synapse, this mechanism is responsive to the rate of Syntaxin-1A-dependent exocytosis.


Assuntos
Hidrolases de Éster Carboxílico/metabolismo , Proteínas de Drosophila/metabolismo , Endocitose/fisiologia , Proteínas de Membrana/metabolismo , Neurônios , Sinapses/metabolismo , Animais , Animais Geneticamente Modificados , Encéfalo/citologia , Encéfalo/metabolismo , Hidrolases de Éster Carboxílico/genética , Células Cultivadas , Proteínas de Drosophila/genética , Drosophila melanogaster/anatomia & histologia , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Endossomos/metabolismo , Endossomos/ultraestrutura , Proteínas de Membrana/genética , Junção Neuromuscular/metabolismo , Junção Neuromuscular/ultraestrutura , Neurônios/citologia , Neurônios/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Sinapses/ultraestrutura
9.
Peptides ; 29(12): 2276-80, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18848852

RESUMO

Numerous neurosecretory cells are known to secrete more than one peptide, in both vertebrates and invertebrates. These co-expressed neuropeptides often originate from differential cleavage of a single large precursor, and are then usually sorted in the regulated pathway into different secretory vesicle classes to allow separable release dynamics. Here, we use immuno-gold electron microscopy to show that two very different neuropeptides (the nonapeptide crustacean cardioactive peptide (CCAP) and the 30 kDa heterodimeric bursicon) are co-packaged within the same dense core vesicles in neurosecretory neurons in the abdominal ganglia of Periplaneta americana. We suggest that this co-packaging serves a physiological function in which CCAP accelerates the distribution of bursicon to the epidermis after ecdysis to regulate sclerotization of the newly formed cuticle.


Assuntos
Gânglios dos Invertebrados/metabolismo , Hormônios de Invertebrado/metabolismo , Neuropeptídeos/metabolismo , Periplaneta/metabolismo , Vesículas Secretórias/metabolismo , Animais , Gânglios dos Invertebrados/ultraestrutura , Larva/metabolismo , Larva/ultraestrutura , Microscopia Imunoeletrônica , Neurônios/metabolismo , Neurônios/ultraestrutura , Periplaneta/ultraestrutura , Vesículas Secretórias/ultraestrutura
10.
J Neurosci ; 28(14): 3668-82, 2008 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-18385325

RESUMO

A systematic forward genetic Drosophila screen for electroretinogram mutants lacking synaptic transients identified the fuseless (fusl) gene, which encodes a predicted eight-pass transmembrane protein in the presynaptic membrane. Null fusl mutants display >75% reduction in evoked synaptic transmission but, conversely, an approximately threefold increase in the frequency and amplitude of spontaneous synaptic vesicle fusion events. These neurotransmission defects are rescued by a wild-type fusl transgene targeted only to the presynaptic cell, demonstrating a strictly presynaptic requirement for Fusl function. Defects in FM dye turnover at the synapse show a severely impaired exo-endo synaptic vesicle cycling pool. Consistently, ultrastructural analyses reveal accumulated vesicles arrested in clustered and docked pools at presynaptic active zones. In the absence of Fusl, calcium-dependent neurotransmitter release is dramatically compromised and there is little enhancement of synaptic efficacy with elevated external Ca(2+) concentrations. These defects are causally linked with severe loss of the Cacophony voltage-gated Ca(2+) channels, which fail to localize normally at presynaptic active zone domains in the absence of Fusl. These data indicate that Fusl regulates assembly of the presynaptic active zone Ca(2+) channel domains required for efficient coupling of the Ca(2+) influx and synaptic vesicle exocytosis during neurotransmission.


Assuntos
Canais de Cálcio/metabolismo , Cálcio/metabolismo , Proteínas de Drosophila/fisiologia , Exocitose/fisiologia , Terminações Pré-Sinápticas/metabolismo , Vesículas Sinápticas/fisiologia , Animais , Animais Geneticamente Modificados , Membrana Celular/fisiologia , Drosophila , Proteínas de Drosophila/deficiência , Proteínas de Drosophila/genética , Eletrorretinografia/métodos , Embrião não Mamífero , Potenciais Evocados Visuais/fisiologia , Proteínas de Fluorescência Verde/metabolismo , Proteínas de Membrana/fisiologia , Análise em Microsséries , Mutação/fisiologia , Proteínas do Tecido Nervoso/fisiologia , Junção Neuromuscular/efeitos dos fármacos , Junção Neuromuscular/fisiologia , Junção Neuromuscular/ultraestrutura , Técnicas de Patch-Clamp/métodos , Estimulação Luminosa/métodos , Terminações Pré-Sinápticas/ultraestrutura , Interferência de RNA/fisiologia , Transmissão Sináptica/fisiologia , Visão Ocular/genética , Vias Visuais/anatomia & histologia , Vias Visuais/metabolismo
11.
Mol Cell Neurosci ; 37(4): 747-60, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18280750

RESUMO

Fragile X syndrome is caused by loss of the FMRP translational regulator. A current hypothesis proposes that FMRP functions downstream of mGluR signaling to regulate synaptic connections. Using the Drosophila disease model, we test relationships between dFMRP and the sole Drosophila mGluR (DmGluRA) by assaying protein expression, behavior and neuron structure in brain and NMJ; in single mutants, double mutants and with an mGluR antagonist. At the protein level, dFMRP is upregulated in dmGluRA mutants, and DmGluRA is upregulated in dfmr1 mutants, demonstrating mutual negative feedback. Null dmGluRA mutants display defects in coordinated movement behavior, which are rescued by removing dFMRP expression. Null dfmr1 mutants display increased NMJ presynaptic structural complexity and elevated presynaptic vesicle pools, which are rescued by blocking mGluR signaling. Null dfmr1 brain neurons similarly display increased presynaptic architectural complexity, which is rescued by blocking mGluR signaling. These data show that DmGluRA and dFMRP convergently regulate presynaptic properties.


Assuntos
Proteínas de Drosophila/fisiologia , Proteína do X Frágil da Deficiência Intelectual/fisiologia , Junção Neuromuscular/fisiologia , Receptores de Glutamato Metabotrópico/fisiologia , Transdução de Sinais/fisiologia , Animais , Comportamento Animal/fisiologia , Drosophila , Proteínas de Drosophila/genética , Proteína do X Frágil da Deficiência Intelectual/genética , Movimento/fisiologia , Mutação , Junção Neuromuscular/ultraestrutura , Receptores de Glutamato Metabotrópico/genética , Transdução de Sinais/genética
12.
Nat Neurosci ; 11(2): 143-51, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18176560

RESUMO

Motor function requires that motor axons extend from the spinal cord at regular intervals and that they are myelinated by Schwann cells. Little attention has been given to another cellular structure, the perineurium, which ensheaths the motor nerve, forming a flexible, protective barrier. Consequently, the origin of perineurial cells and their roles in motor nerve formation are poorly understood. Using time-lapse imaging in zebrafish, we show that perineurial cells are born in the CNS, arising as ventral spinal-cord glia before migrating into the periphery. In embryos lacking perineurial glia, motor neurons inappropriately migrated outside of the spinal cord and had aberrant axonal projections, indicating that perineurial glia carry out barrier and guidance functions at motor axon exit points. Additionally, reciprocal signaling between perineurial glia and Schwann cells was necessary for motor nerve ensheathment by both cell types. These insights reveal a new class of CNS-born glia that critically contributes to motor nerve development.


Assuntos
Axônios/fisiologia , Sistema Nervoso Central/citologia , Neurônios Motores/fisiologia , Bainha de Mielina/fisiologia , Neuroglia/fisiologia , Nervos Periféricos/fisiologia , Animais , Animais Geneticamente Modificados , Diferenciação Celular , Embrião não Mamífero , Peixes , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Proteína Homeobox Nkx-2.2 , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Microscopia Eletrônica de Transmissão , Morfolinas/farmacologia , Bainha de Mielina/ultraestrutura , Neuroglia/ultraestrutura , Nervos Periféricos/citologia , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Células de Schwann/fisiologia , Células de Schwann/ultraestrutura , Medula Espinal/citologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Alcaloides de Veratrum/farmacologia , Proteínas de Peixe-Zebra/genética , Proteína da Zônula de Oclusão-1
13.
Genes Dev ; 21(20): 2607-28, 2007 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-17901219

RESUMO

Formation and regulation of excitatory glutamatergic synapses is essential for shaping neural circuits throughout development. In a Drosophila genetic screen for synaptogenesis mutants, we identified mind the gap (mtg), which encodes a secreted, extracellular N-glycosaminoglycan-binding protein. MTG is expressed neuronally and detected in the synaptic cleft, and is required to form the specialized transsynaptic matrix that links the presynaptic active zone with the post-synaptic glutamate receptor (GluR) domain. Null mtg embryonic mutant synapses exhibit greatly reduced GluR function, and a corresponding loss of localized GluR domains. All known post-synaptic signaling/scaffold proteins functioning upstream of GluR localization are also grossly reduced or mislocalized in mtg mutants, including the dPix-dPak-Dock cascade and the Dlg/PSD-95 scaffold. Ubiquitous or neuronally targeted mtg RNA interference (RNAi) similarly reduce post-synaptic assembly, whereas post-synaptically targeted RNAi has no effect, indicating that presynaptic MTG induces and maintains the post-synaptic pathways driving GluR domain formation. These findings suggest that MTG is secreted from the presynaptic terminal to shape the extracellular synaptic cleft domain, and that the cleft domain functions to mediate transsynaptic signals required for post-synaptic development.


Assuntos
Drosophila/embriologia , Sinapses/metabolismo , Sequência de Aminoácidos , Animais , Sequência de Bases , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Mapeamento Cromossômico , Primers do DNA/genética , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Matriz Extracelular/metabolismo , Genes de Insetos , Glicosaminoglicanos/metabolismo , Microscopia Eletrônica de Transmissão , Dados de Sequência Molecular , Mutação , Junção Neuromuscular/embriologia , Junção Neuromuscular/genética , Junção Neuromuscular/metabolismo , Interferência de RNA , Receptores de Glutamato/metabolismo , Homologia de Sequência de Aminoácidos , Sinapses/ultraestrutura
14.
Biol Cell ; 99(11): 615-26, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17523916

RESUMO

BACKGROUND INFORMATION: Protein degradation via the UPS (ubiquitin-proteasome system) plays critical roles in muscle metabolism and signalling pathways. The present study investigates temporal requirements of the UPS in muscle using conditional expression of mutant proteasome beta subunits to cause targeted inhibition of proteasome function. RESULTS AND CONCLUSIONS: The Drosophila GeneSwitch system was used, with analyses of the well-characterized larval somatic body wall muscles. This method acutely disrupts proteasome function and causes rapid accumulation of polyubiquitinated proteins, specifically within the muscle. Within 12 h of transgenic proteasome inhibition, there was a gross disorganization of muscle architecture and prominent muscle atrophy, progressing to the arrest of all co-ordinated movement by 24 h. Progressive muscle architecture changes include rapid loss of sarcomere organization, loss of nuclei spacing/patterning, vacuole formation and the accumulation of nuclear and cytoplasmic aggregates at the ultrastructural level. At the neuromuscular junction, the highly specialized muscle membrane folds of the subsynaptic reticulum were rapidly lost. Within 24 h after transgenic proteasome inhibition, muscles contained numerous autophagosomes and displayed highly elevated expression of the endoplasmic reticulum chaperone GRP78 (glucose-regulated protein of 78 kDa), indicating that the loss of muscle maintenance correlates with induction of the unfolded protein response. Taken together, these results demonstrate that the UPS is acutely required for maintenance of muscle and neuromuscular junction architecture, and provides a Drosophila genetic model to mechanistically evaluate this requirement.


Assuntos
Proteínas de Drosophila/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Subunidades Proteicas/biossíntese , Sarcômeros/enzimologia , Ubiquitina/metabolismo , Animais , Animais Geneticamente Modificados/genética , Animais Geneticamente Modificados/metabolismo , Membrana Celular/enzimologia , Membrana Celular/genética , Membrana Celular/patologia , Núcleo Celular/enzimologia , Núcleo Celular/genética , Núcleo Celular/patologia , Citoplasma/enzimologia , Citoplasma/genética , Citoplasma/patologia , Proteínas de Drosophila/antagonistas & inibidores , Proteínas de Drosophila/genética , Drosophila melanogaster , Chaperona BiP do Retículo Endoplasmático , Proteínas de Choque Térmico/biossíntese , Proteínas de Choque Térmico/genética , Larva/enzimologia , Larva/genética , Modelos Genéticos , Chaperonas Moleculares/biossíntese , Chaperonas Moleculares/genética , Junção Neuromuscular/enzimologia , Junção Neuromuscular/patologia , Complexo de Endopeptidases do Proteassoma/genética , Inibidores de Proteassoma , Subunidades Proteicas/genética , Sarcômeros/patologia , Ubiquitina/genética
15.
J Neurosci ; 26(9): 2369-79, 2006 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-16510714

RESUMO

Rolling blackout (RBO) is a putative transmembrane lipase required for phospholipase C-dependent phosphatidylinositol 4,5-bisphosphate-diacylglycerol signaling in Drosophila neurons. Conditional temperature-sensitive (TS) rbo mutants display complete, reversible paralysis within minutes, demonstrating that RBO is acutely required for movement. RBO protein is localized predominantly in presynaptic boutons at neuromuscular junction (NMJ) synapses and throughout central synaptic neuropil, and rbo TS mutants display a complete, reversible block of both central and peripheral synaptic transmission within minutes. This phenotype appears limited to adults, because larval NMJs do not manifest the acute blockade. Electron microscopy of adult rbo TS mutant boutons reveals an increase in total synaptic vesicle (SV) content, with a concomitant shrinkage of presynaptic bouton size and an accumulation of docked SVs at presynaptic active zones within minutes. Genetic tests reveal a synergistic interaction between rbo and syntaxin1A TS mutants, suggesting that RBO is required in the mechanism of N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE)-mediated SV exocytosis, or in a parallel pathway necessary for SV fusion. The rbo TS mutation does not detectably alter SNARE complex assembly, suggesting a downstream requirement in SV fusion. We conclude that RBO plays an essential role in neurotransmitter release, downstream of SV docking, likely mediating SV fusion.


Assuntos
Hidrolases de Éster Carboxílico/fisiologia , Proteínas de Drosophila/fisiologia , Exocitose/fisiologia , Transmissão Sináptica/fisiologia , Vesículas Sinápticas/fisiologia , Sensação Térmica/fisiologia , Animais , Animais Geneticamente Modificados , Comportamento Animal , Western Blotting/métodos , Proteínas de Caenorhabditis elegans/metabolismo , Hidrolases de Éster Carboxílico/genética , Proteínas de Transporte , Diagnóstico por Imagem/métodos , Relação Dose-Resposta à Radiação , Proteínas de Drosophila/genética , Estimulação Elétrica/métodos , Potenciais Pós-Sinápticos Excitadores/genética , Potenciais Pós-Sinápticos Excitadores/efeitos da radiação , Feminino , Peroxidase do Rábano Silvestre/metabolismo , Imuno-Histoquímica/métodos , Larva , Masculino , Microscopia Eletrônica de Transmissão/métodos , Modelos Neurológicos , Movimento/fisiologia , Mutação/fisiologia , Fibras Nervosas/fisiologia , Fibras Nervosas/efeitos da radiação , Junção Neuromuscular/genética , Junção Neuromuscular/fisiologia , Junção Neuromuscular/efeitos da radiação , Junção Neuromuscular/ultraestrutura , Tempo de Reação/fisiologia , Tempo de Reação/efeitos da radiação , Proteínas SNARE/metabolismo , Transmissão Sináptica/genética , Vesículas Sinápticas/ultraestrutura , Sensação Térmica/genética , Fatores de Tempo
16.
Cell ; 120(5): 663-74, 2005 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-15766529

RESUMO

Gag proteins direct the process of retroviral particle assembly and form the major protein constituents of the viral core. The matrix region of the HIV-1 Gag polyprotein plays a critical role in the transport of Gag to the plasma membrane assembly site. Recent evidence indicates that Gag trafficking to late endosomal compartments, including multivesicular bodies, occurs prior to viral particle budding from the plasma membrane. Here we demonstrate that the matrix region of HIV-1 Gag interacts directly with the delta subunit of the AP-3 complex, and that this interaction plays an important functional role in particle assembly. Disruption of this interaction eliminated Gag trafficking to multivesicular bodies and diminished HIV particle formation. These studies illuminate an early step in retroviral particle assembly and provide evidence that the trafficking of Gag to late endosomes is part of a productive particle assembly pathway.


Assuntos
Complexo 3 de Proteínas Adaptadoras/metabolismo , Endossomos/metabolismo , Produtos do Gene gag/metabolismo , HIV-1/metabolismo , Montagem de Vírus/fisiologia , Subunidades delta do Complexo de Proteínas Adaptadoras/metabolismo , Endossomos/ultraestrutura , Endossomos/virologia , HIV-1/ultraestrutura , Células HeLa , Humanos , Microscopia Eletrônica de Transmissão , Ligação Proteica/fisiologia , Estrutura Terciária de Proteína/fisiologia , Subunidades Proteicas/metabolismo , Transporte Proteico/fisiologia , Vesículas Transportadoras/metabolismo , Vesículas Transportadoras/ultraestrutura , Vesículas Transportadoras/virologia
17.
Mol Cell Proteomics ; 4(3): 278-90, 2005 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15634690

RESUMO

Fragile X syndrome is the most common form of inherited mental retardation, associated with both cognitive and behavioral anomalies. The disease is caused by silencing of the fragile X mental retardation 1 (fmr1) gene, which encodes the mRNA-binding, translational regulator FMRP. Previously we established a disease model through mutation of Drosophila fmr1 (dfmr1) and showed that loss of dFMRP causes defects in neuronal structure, function, and behavioral output similar to the human disease state. To uncover molecular targets of dFMRP in the brain, we use here a proteomic approach involving two-dimensional difference gel electrophoresis analyses followed by mass spectrometry identification of proteins with significantly altered expression in dfmr1 null mutants. We then focus on two misregulated enzymes, phenylalanine hydroxylase (Henna) and GTP cyclohydrolase (Punch), both of which mediate in concert the synthetic pathways of two key monoamine neuromodulators, dopamine and serotonin. Brain enzymatic assays show a nearly 2-fold elevation of Punch activity in dfmr1 null mutants. Consistently brain neurochemical assays show that both dopamine and serotonin are significantly increased in dfmr1 null mutants. At a cellular level, dfmr1 null mutant neurons display a highly significant elevation of the dense core vesicles that package these monoamine neuromodulators for secretion. Taken together, these data indicate that dFMRP normally down-regulates the monoamine pathway, which is consequently up-regulated in the mutant condition. Elevated brain levels of dopamine and serotonin provide a plausible mechanistic explanation for aspects of cognitive and behavioral deficits in human patients.


Assuntos
Dopamina/biossíntese , Proteínas de Drosophila/biossíntese , Proteínas de Drosophila/genética , Proteínas de Ligação a RNA/genética , Serotonina/biossíntese , Animais , Encéfalo/metabolismo , Drosophila , Eletroforese em Gel Bidimensional , Metabolismo Energético , Feminino , Proteína do X Frágil da Deficiência Intelectual , Síndrome do Cromossomo X Frágil/genética , GTP Cicloidrolase/biossíntese , Perfilação da Expressão Gênica , Masculino , Espectrometria de Massas , Mutação , Fenilalanina Hidroxilase/biossíntese , Proteômica , Regulação para Cima
18.
Curr Biol ; 14(20): 1863-70, 2004 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-15498496

RESUMO

Fragile X Syndrome (FraX) is the most common form of inherited mental retardation. The disease is caused by the silencing of the fragile X mental retardation 1 (fmr1) gene, which encodes the RNA binding translational regulator FMRP . In FraX patients and fmr1 knockout mice, loss of FMRP causes denser and morphologically altered postsynaptic dendritic spines . Previously, we established a Drosophila FraX model and showed that dFMRP acts as a negative translational regulator of Futsch/MAP1B and negatively regulates synaptic branching and structural elaboration in the peripheral neuromuscular junction (NMJ) . Here, we investigate the role of dFMRP in the central brain, focusing on the mushroom body (MB), the learning and memory center . In MB neurons, dFMRP bidirectionally regulates multiple levels of structural architecture, including process formation from the soma, dendritic elaboration, axonal branching, and synaptogenesis. Drosophila fmr1 (dfmr) null mutant neurons display more complex architecture, including overgrowth, overbranching, and abnormal synapse formation. In contrast, dFMRP overexpression simplifies neuronal structure, causing undergrowth, underbranching, and loss of synapse differentiation. Studies of ultrastructural dfmr mutant neurons reveal enlarged and irregular synaptic boutons with dense accumulation of synaptic vesicles. Taken together, these data show that dFMRP is a potent negative regulator of neuronal architecture and synaptic differentiation in both peripheral and central nervous systems.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila/genética , Síndrome do Cromossomo X Frágil/genética , Regulação da Expressão Gênica , Corpos Pedunculados/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Proteínas de Ligação a RNA/metabolismo , Animais , Modelos Animais de Doenças , Proteína do X Frágil da Deficiência Intelectual , Imuno-Histoquímica , Microscopia Eletrônica de Transmissão , Corpos Pedunculados/ultraestrutura , Proteínas do Tecido Nervoso/genética , Terminações Pré-Sinápticas/ultraestrutura , Proteínas de Ligação a RNA/genética
19.
J Neurosci ; 24(36): 7789-803, 2004 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-15356190

RESUMO

A screen for Drosophila synaptic dysfunction mutants identified slug-a-bed (slab). The slab gene encodes ceramidase, a central enzyme in sphingolipid metabolism and regulation. Sphingolipids are major constituents of lipid rafts, membrane domains with roles in vesicle trafficking, and signaling pathways. Null slab mutants arrest as fully developed embryos with severely reduced movement. The SLAB protein is widely expressed in different tissues but enriched in neurons at all stages of development. Targeted neuronal expression of slab rescues mutant lethality, demonstrating the essential neuronal function of the protein. C(5)-ceramide applied to living preparations is rapidly accumulated at neuromuscular junction (NMJ) synapses dependent on the SLAB expression level, indicating that synaptic sphingolipid trafficking and distribution is regulated by SLAB function. Evoked synaptic currents at slab mutant NMJs are reduced by 50-70%, whereas postsynaptic glutamate-gated currents are normal, demonstrating a specific presynaptic impairment. Hypertonic saline-evoked synaptic vesicle fusion is similarly impaired by 50-70%, demonstrating a loss of readily releasable vesicles. In addition, FM1-43 dye uptake is reduced in slab mutant presynaptic terminals, indicating a smaller cycling vesicle pool. Ultrastructural analyses of mutants reveal a normal vesicle distribution clustered and docked at active zones, but fewer vesicles in reserve regions, and a twofold to threefold increased incidence of vesicles linked together and tethered at the plasma membrane. These results indicate that SLAB ceramidase function controls presynaptic terminal sphingolipid composition to regulate vesicle fusion and trafficking, and thus the strength and reliability of synaptic transmission.


Assuntos
Proteínas de Drosophila/fisiologia , Drosophila melanogaster/enzimologia , Exocitose/fisiologia , Proteínas do Tecido Nervoso/fisiologia , Esfingolipídeos/metabolismo , Transmissão Sináptica/fisiologia , Animais , Animais Geneticamente Modificados , Apoptose , Membrana Celular/ultraestrutura , Proteínas de Drosophila/deficiência , Proteínas de Drosophila/genética , Drosophila melanogaster/embriologia , Drosophila melanogaster/genética , Drosophila melanogaster/fisiologia , Embrião não Mamífero/fisiologia , Corantes Fluorescentes/farmacocinética , Larva/fisiologia , Locomoção/fisiologia , Fusão de Membrana , Proteínas do Tecido Nervoso/deficiência , Proteínas do Tecido Nervoso/genética , Junção Neuromuscular/química , Junção Neuromuscular/ultraestrutura , Técnicas de Patch-Clamp , Compostos de Piridínio/farmacocinética , Compostos de Amônio Quaternário/farmacocinética , Receptores Pré-Sinápticos/fisiologia , Deleção de Sequência , Vesículas Sinápticas/ultraestrutura
20.
Dev Biol ; 270(2): 290-307, 2004 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-15183715

RESUMO

Macroorchidism (i.e., enlarged testicles) and mental retardation are the two hallmark symptoms of Fragile X syndrome (FraX). The disease is caused by loss of fragile X mental retardation protein (FMRP), an RNA-binding translational regulator. We previously established a FraX model in Drosophila, showing that the fly FMRP homologue, dFXR, acts as a negative translational regulator of microtubule-associated Futsch to control stability of the microtubule cytoskeleton during nervous system development. Here, we investigate dFXR function in the testes. Male dfxr null mutants have the enlarged testes characteristic of the disease and are nearly sterile (>90% reduced male fecundity). dFXR protein is highly enriched in Drosophila testes, particularly in spermatogenic cells during the early stages of spermatogenesis. Cytological analyses reveal that spermatogenesis is arrested specifically in late-stage spermatid differentiation following individualization. Ultrastructurally, dfxr mutants lose specifically the central pair microtubules in the sperm tail axoneme. The frequency of central pair microtubule loss becomes progressively greater as spermatogenesis progresses, suggesting that dFXR regulates microtubule stability. Proteomic analyses reveal that chaperones Hsp60B-, Hsp68-, Hsp90-related protein TRAP1, and other proteins have altered expression in dfxr mutant testes. Taken together with our previous nervous system results, these data suggest a common model in which dFXR regulates microtubule stability in both synaptogenesis in the nervous system and spermatogenesis in the testes. The characterization of dfxr function in the testes paves the way to genetic screens for modifiers of dfxr-induced male sterility, as a means to efficiently dissect FMRP-mediated mechanisms.


Assuntos
Proteínas de Drosophila/genética , Drosophila/genética , Síndrome do Cromossomo X Frágil/genética , Microtúbulos/fisiologia , Proteínas de Ligação a RNA/genética , Espermatogênese/fisiologia , Testículo/fisiologia , Animais , Western Blotting , Modelos Animais de Doenças , Drosophila/fisiologia , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/fisiologia , Eletroforese em Gel Bidimensional , Eletroforese em Gel de Poliacrilamida , Proteína do X Frágil da Deficiência Intelectual , Imuno-Histoquímica , Masculino , Microscopia Confocal , Microscopia Eletrônica , Microtúbulos/diagnóstico por imagem , Chaperonas Moleculares/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/fisiologia , Cauda do Espermatozoide/diagnóstico por imagem , Espermatogênese/genética , Testículo/metabolismo , Testículo/ultraestrutura , Ultrassonografia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...