Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 10(1): 19092, 2020 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-33154412

RESUMO

Hurricane Michael (2018) was the first Category 5 storm on record to make landfall on the Florida panhandle since at least 1851 CE (Common Era), and it resulted in the loss of 59 lives and $25 billion in damages across the southeastern U.S. This event placed a spotlight on recent intense (exceeding Category 4 or 5 on the Saffir-Simpson Hurricane Wind Scale) hurricane landfalls, prompting questions about the natural range in variability of hurricane activity that the instrumental record is too short to address. Of particular interest is determining whether the frequency of recent intense hurricane landfalls in the northern Gulf of Mexico (GOM) is within or outside the natural range of intense hurricane activity prior to 1851 CE. In this study, we identify intense hurricane landfalls in northwest Florida during the past 2000 years based on coarse anomaly event detection from two coastal lacustrine sediment archives. We identified a historically unprecedented period of heightened storm activity common to four Florida panhandle localities from 650 to 1250 CE and a shift to a relatively quiescent storm climate in the GOM spanning the past six centuries. Our study provides long-term context for events like Hurricane Michael and suggests that the observational period 1851 CE to present may underrepresent the natural range in landfalling hurricane activity.

3.
IEEE Trans Vis Comput Graph ; 23(1): 451-460, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27875161

RESUMO

Physical data representations, or data physicalizations, are a promising new medium to represent and communicate data. Previous work mostly studied passive physicalizations which require humans to perform all interactions manually. Dynamic shape-changing displays address this limitation and facilitate data exploration tasks such as sorting, navigating in data sets which exceed the fixed size of a given physical display, or preparing "views" to communicate insights about data. However, it is currently unclear how people approach and interact with such data representations. We ran an exploratory study to investigate how non-experts made use of a dynamic physical bar chart for an open-ended data exploration and presentation task. We asked 16 participants to explore a data set on European values and to prepare a short presentation of their insights using a physical display. We analyze: (1) users' body movements to understand how they approach and react to the physicalization, (2) their hand-gestures to understand how they interact with physical data, (3) system interactions to understand which subsets of the data they explored and which features they used in the process, and (4) strategies used to explore the data and present observations. We discuss the implications of our findings for the use of dynamic data physicalizations and avenues for future work.

4.
Behav Res Methods ; 48(4): 1296-1307, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-26487052

RESUMO

MultiLog is a logging tool that controls, gathers, and combines the output, on-the-fly, from existing research and commercial logging applications or "loggers." Loggers record a specific set of user actions on a computing device, helping researchers to better understand environments or interactions, guiding the design of new or improved interfaces and applications. MultiLog reduces researchers' required implementation effort by simplifying the set-up of multiple loggers and seamlessly combining their output. This in turn increases the availability of logging systems to non-technical experimenters for both short-term and longitudinal observation studies. MultiLog supports two operating modes: "researcher mode" where experimenters configure multiple logging systems, and "deployment mode" where the system is deployed to user-study participants' systems. Researcher mode allows researchers to install, configure log filtering and obfuscation, observe near real-time event streams, and save configuration files ready for deployment. Deployment mode simplifies data collection from multiple loggers by running in the system tray at user log-in, starting loggers, combining their output, and securely uploading the data to a web-server. It also supports real-time browsing of log data, pausing of logging, and removal of log lines. Performance evaluations show that MultiLog does not adversely affect system performance, even when simultaneously running several logging systems. Initial studies show the system runs reliably over a period of 10 weeks.


Assuntos
Técnicas de Observação do Comportamento/métodos , Coleta de Dados , Software , Humanos
5.
Sci Rep ; 4: 7366, 2014 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-25482298

RESUMO

The magnitude of flooding in New York City by Hurricane Sandy is commonly believed to be extremely rare, with estimated return periods near or greater than 1000 years. However, the brevity of tide gauge records result in significant uncertainties when estimating the uniqueness of such an event. Here we compare resultant deposition by Hurricane Sandy to earlier storm-induced flood layers in order to extend records of flooding to the city beyond the instrumental dataset. Inversely modeled storm conditions from grain size trends show that a more compact yet more intense hurricane in 1821 CE probably resulted in a similar storm tide and a significantly larger storm surge. Our results indicate the occurrence of additional flood events like Hurricane Sandy in recent centuries, and highlight the inadequacies of the instrumental record in estimating current flood risk by such extreme events.

6.
Nature ; 504(7478): 44-52, 2013 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-24305147

RESUMO

The future impacts of climate change on landfalling tropical cyclones are unclear. Regardless of this uncertainty, flooding by tropical cyclones will increase as a result of accelerated sea-level rise. Under similar rates of rapid sea-level rise during the early Holocene epoch most low-lying sedimentary coastlines were generally much less resilient to storm impacts. Society must learn to live with a rapidly evolving shoreline that is increasingly prone to flooding from tropical cyclones. These impacts can be mitigated partly with adaptive strategies, which include careful stewardship of sediments and reductions in human-induced land subsidence.


Assuntos
Tempestades Ciclônicas , Inundações , Clima Tropical , Conservação dos Recursos Naturais , Ecossistema , Oceanos e Mares
7.
Nature ; 460(7257): 880-3, 2009 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-19675650

RESUMO

Atlantic tropical cyclone activity, as measured by annual storm counts, reached anomalous levels over the past decade. The short nature of the historical record and potential issues with its reliability in earlier decades, however, has prompted an ongoing debate regarding the reality and significance of the recent rise. Here we place recent activity in a longer-term context by comparing two independent estimates of tropical cyclone activity over the past 1,500 years. The first estimate is based on a composite of regional sedimentary evidence of landfalling hurricanes, while the second estimate uses a previously published statistical model of Atlantic tropical cyclone activity driven by proxy reconstructions of past climate changes. Both approaches yield consistent evidence of a peak in Atlantic tropical cyclone activity during medieval times (around ad 1000) followed by a subsequent lull in activity. The statistical model indicates that the medieval peak, which rivals or even exceeds (within uncertainties) recent levels of activity, results from the reinforcing effects of La-Niña-like climate conditions and relative tropical Atlantic warmth.

8.
Nature ; 447(7143): 465-8, 2007 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-17522681

RESUMO

The processes that control the formation, intensity and track of hurricanes are poorly understood. It has been proposed that an increase in sea surface temperatures caused by anthropogenic climate change has led to an increase in the frequency of intense tropical cyclones, but this proposal has been challenged on the basis that the instrumental record is too short and unreliable to reveal trends in intense tropical cyclone activity. Storm-induced deposits preserved in the sediments of coastal lagoons offer the opportunity to study the links between climatic conditions and hurricane activity on longer timescales, because they provide centennial- to millennial-scale records of past hurricane landfalls. Here we present a record of intense hurricane activity in the western North Atlantic Ocean over the past 5,000 years based on sediment cores from a Caribbean lagoon that contain coarse-grained deposits associated with intense hurricane landfalls. The record indicates that the frequency of intense hurricane landfalls has varied on centennial to millennial scales over this interval. Comparison of the sediment record with palaeo-climate records indicates that this variability was probably modulated by atmospheric dynamics associated with variations in the El Niño/Southern Oscillation and the strength of the West African monsoon, and suggests that sea surface temperatures as high as at present are not necessary to support intervals of frequent intense hurricanes. To accurately predict changes in intense hurricane activity, it is therefore important to understand how the El Niño/Southern Oscillation and the West African monsoon will respond to future climate change.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...