Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Inorg Chem ; 53(12): 6066-72, 2014 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-24878059

RESUMO

Transition metal complexes supported by pincer ligands have many important applications. Here, the syntheses of five-coordinate PNP pincer-supported Fe complexes of the type (PNP)FeCl2 (PNP = HN{CH2CH2(PR2)}2, R = iPr ((iPr)PNP), tBu ((tBu)PNP), or cyclohexyl ((Cy)PNP)) are reported. In the solid state, ((iPr)PNP)FeCl2 was characterized in two different geometries by X-ray crystallography. In one form, the (iPr)PNP ligand binds to the Fe center in the typical meridional geometry for a pincer ligand, whereas in the other form, the (iPr)PNP ligand binds in a facial geometry. The electronic structures and geometries of all of the (PNP)FeCl2 complexes were further explored using (57)Fe Mössbauer and magnetic circular dichroism spectroscopy. These measurements show that in some cases two isomers of the (PNP)FeCl2 complexes are present in solution and conclusively demonstrate that binding of the PNP ligand is flexible, which may have implications for the reactivity of this important class of compounds.

2.
J Am Chem Soc ; 136(14): 5400-6, 2014 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-24635441

RESUMO

The binding of three closely related chelators: 5-hydroxy-2-methyl-4H-pyran-4-thione (allothiomaltol, ATM), 3-hydroxy-2-methyl-4H-pyran-4-thione (thiomaltol, TM), and 3-hydroxy-4H-pyran-4-thione (thiopyromeconic acid, TPMA) to the active site of human carbonic anhydrase II (hCAII) has been investigated. Two of these ligands display a monodentate mode of coordination to the active site Zn(2+) ion in hCAII that is not recapitulated in model complexes of the enzyme active site. This unprecedented binding mode in the hCAII-thiomaltol complex has been characterized by both X-ray crystallography and X-ray spectroscopy. In addition, the steric restrictions of the active site force the ligands into a 'flattened' mode of coordination compared with inorganic model complexes. This change in geometry has been shown by density functional computations to significantly decrease the strength of the metal-ligand binding. Collectively, these data demonstrate that the mode of binding by small metal-binding groups can be significantly influenced by the protein active site. Diminishing the strength of the metal-ligand bond results in unconventional modes of metal coordination not found in typical coordination compounds or even carefully engineered active site models, and understanding these effects is critical to the rational design of inhibitors that target clinically relevant metalloproteins.


Assuntos
Anidrase Carbônica II/antagonistas & inibidores , Inibidores da Anidrase Carbônica/farmacologia , Quelantes/farmacologia , Anidrase Carbônica II/química , Anidrase Carbônica II/metabolismo , Inibidores da Anidrase Carbônica/química , Domínio Catalítico/efeitos dos fármacos , Quelantes/química , Humanos , Modelos Moleculares , Estrutura Molecular , Relação Estrutura-Atividade
3.
J Bacteriol ; 194(11): 2884-93, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22467784

RESUMO

To successfully establish an infection, Acinetobacter baumannii must overcome the iron starvation and oxidative stress imposed by the human host. Although previous studies have shown that ATCC 19606(T) cells acquire iron via the acinetobactin-mediated siderophore system, little is known about intracellular iron metabolism and its relation to oxidative stress in this pathogen. Screening of an insertion library resulted in the isolation of the ATCC 19606(T) derivative 1644, which was unable to grow in iron-chelated media. Rescue cloning and DNA sequencing showed that the insertion inactivated a gene coding for an NfuA Fe-S cluster protein ortholog, without any effect on the expression of the acinetobactin system. The nfuA mutant was also more sensitive to hydrogen peroxide and cumene hydroperoxide than the parental strain. The iron chelation- and oxidative-stress-deficient responses of this mutant were corrected when complemented with either the ATCC 19606(T) parental allele or the Escherichia coli MG1655 nfuA ortholog. Furthermore, electron paramagnetic resonance (EPR) and inductively coupled plasma-atomic emission spectroscopy (ICP-AES) analyses showed that the ATCC 19606(T) NfuA ortholog has iron-binding properties compatible with the formation of [Fe-S] cluster protein. Ex vivo and in vivo assays using human epithelial cells and Galleria mellonella, respectively, showed that NfuA is critical for bacterial growth independent of their capacity to acquire iron or the presence of excess of free iron. Taken together, these observations indicate that the A. baumannii NfuA ortholog plays a role in intracellular iron utilization and protection from oxidative-stress responses that this pathogen could encounter during the infection of the human host.


Assuntos
Infecções por Acinetobacter/microbiologia , Acinetobacter baumannii/metabolismo , Acinetobacter baumannii/patogenicidade , Proteínas de Bactérias/metabolismo , Proteínas Ferro-Enxofre/metabolismo , Estresse Oxidativo , Infecções por Acinetobacter/metabolismo , Acinetobacter baumannii/genética , Acinetobacter baumannii/crescimento & desenvolvimento , Animais , Proteínas de Bactérias/genética , Linhagem Celular , Escherichia coli/genética , Escherichia coli/metabolismo , Humanos , Peróxido de Hidrogênio/metabolismo , Ferro/metabolismo , Proteínas Ferro-Enxofre/genética , Dados de Sequência Molecular , Mariposas , Sideróforos/metabolismo , Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...