Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Methods Mol Biol ; 2628: 127-152, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36781783

RESUMO

One of the cornerstones of effective cancer treatment is early diagnosis. In this context, the identification of proteins that can serve as cancer biomarkers in bodily fluids ("liquid biopsies") has gained attention over the last decade. Plasma and serum fractions of blood are the most commonly investigated sources of potential cancer liquid biopsy biomarkers. However, the high complexity and dynamic range typical of these fluids hinders the sensitivity of protein detection by the most commonly used mass spectrometry technology (data-dependent acquisition mass spectrometry (DDA-MS)). Recently, data-independent acquisition mass spectrometry (DIA-MS) techniques have overcome the limitations of DDA-MS, increasing sensitivity and proteome coverage. In addition to DIA-MS, isolating extracellular vesicles (EVs) can help to increase the depth of serum/plasma proteome coverage by improving the identification of low-abundance proteins which are a potential treasure trove of diagnostic molecules. EVs, the nano-sized membrane-enclosed vesicles present in most bodily fluids, contain proteins which may serve as potential biomarkers for various cancers. Here, we describe a detailed protocol that combines DIA-MS and EV methodologies for discovering and validating early cancer biomarkers using blood serum. The pipeline includes size exclusion chromatography methods to isolate serum-derived extracellular vesicles and subsequent EV sample preparation for liquid chromatography and mass spectrometry analysis. Procedures for spectral library generation by DDA-MS incorporate methods for off-line peptide separation by microflow HPLC with automated fraction concatenation. Analysis of the samples by DIA-MS includes recommended protocols for data processing and statistical methods. This pipeline will provide a guide to discovering and validating EV-associated proteins that can serve as sensitive and specific biomarkers for early cancer detection and other diseases.


Assuntos
Vesículas Extracelulares , Neoplasias , Humanos , Biomarcadores Tumorais/metabolismo , Proteômica/métodos , Proteoma/metabolismo , Espectrometria de Massas/métodos , Neoplasias/diagnóstico , Neoplasias/metabolismo , Vesículas Extracelulares/metabolismo
2.
Open Biol ; 12(10): 220208, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36259237

RESUMO

MHC-I and MHC-II molecules are critical components of antigen presentation and T cell immunity to pathogens and cancer. The two monoclonal transmissible devil facial tumours (DFT1, DFT2) exploit MHC-I pathways to overcome immunological anti-tumour and allogeneic barriers. This exploitation underpins the ongoing transmission of DFT cells across the wild Tasmanian devil population. We have previously shown that the overexpression of NLRC5 in DFT1 and DFT2 cells can regulate components of the MHC-I pathway but not MHC-II, establishing the stable upregulation of MHC-I on the cell surface. As MHC-II molecules are crucial for CD4+ T cell activation, MHC-II expression in tumour cells is beginning to gain traction in the field of immunotherapy and cancer vaccines. The overexpression of Class II transactivator in transfected DFT1 and DFT2 cells induced the transcription of several genes of the MHC-I and MHC-II pathways. This was further supported by the upregulation of MHC-I protein on DFT1 and DFT2 cells, but interestingly MHC-II protein was upregulated only in DFT1 cells. This new insight into the regulation of MHC-I and MHC-II pathways in cells that naturally overcome allogeneic barriers can inform vaccine, immunotherapy and tissue transplant strategies for human and veterinary medicine.


Assuntos
Neoplasias Faciais , Marsupiais , Animais , Neoplasias Faciais/genética , Neoplasias Faciais/veterinária , Neoplasias Faciais/patologia , Antígenos de Histocompatibilidade Classe II , Peptídeos e Proteínas de Sinalização Intracelular , Marsupiais/genética
3.
Front Immunol ; 13: 858423, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35422813

RESUMO

The identification of practical early diagnostic biomarkers is a cornerstone of improved prevention and treatment of cancers. Such a case is devil facial tumor disease (DFTD), a highly lethal transmissible cancer afflicting virtually an entire species, the Tasmanian devil (Sarcophilus harrisii). Despite a latent period that can exceed one year, to date DFTD diagnosis requires visual identification of tumor lesions. To enable earlier diagnosis, which is essential for the implementation of effective conservation strategies, we analyzed the extracellular vesicle (EV) proteome of 87 Tasmanian devil serum samples using data-independent acquisition mass spectrometry approaches. The antimicrobial peptide cathelicidin-3 (CATH3), released by innate immune cells, was enriched in serum EV samples of both devils with clinical DFTD (87.9% sensitivity and 94.1% specificity) and devils with latent infection (i.e., collected while overtly healthy, but 3-6 months before subsequent DFTD diagnosis; 93.8% sensitivity and 94.1% specificity). Although high expression of antimicrobial peptides has been mostly related to inflammatory diseases, our results suggest that they can be also used as accurate cancer biomarkers, suggesting a mechanistic role in tumorous processes. This EV-based approach to biomarker discovery is directly applicable to improving understanding and diagnosis of a broad range of diseases in other species, and these findings directly enhance the capacity of conservation strategies to ensure the viability of the imperiled Tasmanian devil population.


Assuntos
Vesículas Extracelulares , Neoplasias Faciais , Marsupiais , Animais , Peptídeos Catiônicos Antimicrobianos , Detecção Precoce de Câncer , Vesículas Extracelulares/patologia , Neoplasias Faciais/diagnóstico , Neoplasias Faciais/veterinária , Catelicidinas
4.
Pathogens ; 11(3)2022 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-35335675

RESUMO

Devil facial tumour disease (DFTD) is a transmissible cancer that has circulated in the Tasmanian devil population for >25 years. Like other contagious cancers in dogs and devils, the way DFTD escapes the immune response of its host is a central question to understanding this disease. DFTD has a low major histocompatibility complex class I (MHC-I) expression due to epigenetic modifications, preventing host immune recognition of mismatched MHC-I molecules by T cells. However, the total MHC-I loss should result in natural killer (NK) cell activation due to the 'missing self'. Here, we have investigated the expression of the nonclassical MHC-I, Saha-UD as a potential regulatory or suppressive mechanism for DFTD. A monoclonal antibody was generated against the devil Saha-UD that binds recombinant Saha-UD by Western blot, with limited crossreactivity to the classical MHC-I, Saha-UC and nonclassical Saha-UK. Using this antibody, we confirmed the expression of Saha-UD in 13 DFTD tumours by immunohistochemistry (n = 15) and demonstrated that Saha-UD expression is heterogeneous, with 12 tumours showing intratumour heterogeneity. Immunohistochemical staining for the Saha-UD showed distinct patterns of expression when compared with classical MHC-I molecules. The nonclassical Saha-UD expression by DFTD tumours in vivo may be a mechanism for immunosuppression, and further work is ongoing to characterise its ligand on immune cells.

5.
Cell Mol Life Sci ; 78(23): 7537-7555, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34655299

RESUMO

The iconic Tasmanian devil (Sarcophilus harrisii) is endangered due to the transmissible cancer Devil Facial Tumour Disease (DFTD), of which there are two genetically independent subtypes (DFT1 and DFT2). While DFT1 and DFT2 can be differentially diagnosed using tumour biopsies, there is an urgent need to develop less-invasive biomarkers that can detect DFTD and distinguish between subtypes. Extracellular vesicles (EVs), the nano-sized membrane-enclosed vesicles present in most biofluids, represent a valuable resource for biomarker discovery. Here, we characterized the proteome of EVs from cultured DFTD cells using data-independent acquisition-mass spectrometry and an in-house spectral library of > 1500 proteins. EVs from both DFT1 and DFT2 cell lines expressed higher levels of proteins associated with focal adhesion functions. Furthermore, hallmark proteins of epithelial-mesenchymal transition were enriched in DFT2 EVs relative to DFT1 EVs. These findings were validated in EVs derived from serum samples, revealing that the mesenchymal marker tenascin-C was also enriched in EVs derived from the serum of devils infected with DFT2 relative to those infected with DFT1 and healthy controls. This first EV-based investigation of DFTD increases our understanding of the cancers' EVs and their possible involvement in DFTD progression, such as metastasis. Finally, we demonstrated the potential of EVs to differentiate between DFT1 and DFT2, highlighting their potential use as less-invasive liquid biopsies for the Tasmanian devil.


Assuntos
Biomarcadores Tumorais/sangue , Vesículas Extracelulares/metabolismo , Neoplasias Faciais/classificação , Neoplasias Faciais/diagnóstico , Marsupiais/metabolismo , Proteoma/análise , Tenascina/sangue , Animais , Diagnóstico Diferencial , Neoplasias Faciais/sangue , Espectrometria de Massas , Proteoma/metabolismo
6.
J Cancer Res Clin Oncol ; 147(7): 1973-1991, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33797607

RESUMO

PURPOSE: Downregulation of MHC class I (MHC-I) is a common immune evasion strategy of many cancers. Similarly, two allogeneic clonal transmissible cancers have killed thousands of wild Tasmanian devils (Sarcophilus harrisii) and also modulate MHC-I expression to evade anti-cancer and allograft responses. IFNG treatment restores MHC-I expression on devil facial tumor (DFT) cells but is insufficient to control tumor growth. Transcriptional co-activator NLRC5 is a master regulator of MHC-I in humans and mice but its role in transmissible cancers remains unknown. In this study, we explored the regulation and role of MHC-I in these unique genetically mis-matched tumors. METHODS: We used transcriptome and flow cytometric analyses to determine how MHC-I shapes allogeneic and anti-tumor responses. Cell lines that overexpress NLRC5 to drive antigen presentation, and B2M-knockout cell lines incapable of presenting antigen on MHC-I were used to probe the role of MHC-I in rare cases of tumor regressions. RESULTS: Transcriptomic results suggest that NLRC5 plays a major role in MHC-I regulation in devils. NLRC5 was shown to drive the expression of many components of the antigen presentation pathway but did not upregulate PDL1. Serum from devils with tumor regressions showed strong binding to IFNG-treated and NLRC5 cell lines; antibody binding to IFNG-treated and NRLC5 transgenic tumor cells was diminished or absent following B2M knockout. CONCLUSION: MHC-I could be identified as a target for anti-tumor and allogeneic immunity. Consequently, NLRC5 could be a promising target for immunotherapy and vaccines to protect devils from transmissible cancers and inform development of transplant and cancer therapies for humans.


Assuntos
Apresentação de Antígeno/imunologia , Biomarcadores Tumorais/metabolismo , Neoplasias Faciais/imunologia , Regulação Neoplásica da Expressão Gênica , Antígenos de Histocompatibilidade Classe I/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Animais , Biomarcadores Tumorais/genética , Neoplasias Faciais/genética , Neoplasias Faciais/metabolismo , Neoplasias Faciais/patologia , Antígenos de Histocompatibilidade Classe I/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Marsupiais , Transcriptoma , Células Tumorais Cultivadas
7.
Immunol Cell Biol ; 99(7): 711-723, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33667023

RESUMO

Immune evasion is critical to the growth and survival of cancer cells. This is especially pertinent to transmissible cancers, which evade immune detection across genetically diverse hosts. The Tasmanian devil (Sarcophilus harrisii) is threatened by the emergence of Devil Facial Tumour Disease (DFTD), comprising two transmissible cancers (DFT1 and DFT2). The development of effective prophylactic vaccines and therapies against DFTD has been restricted by an incomplete understanding of how allogeneic DFT1 and DFT2 cells maintain immune evasion upon activation of tumour-specific immune responses. In this study, we used RNA sequencing to examine tumours from three experimental DFT1 cases. Two devils received a vaccine prior to inoculation with live DFT1 cells, providing an opportunity to explore changes to DFT1 cancers under immune pressure. Analysis of DFT1 in the non-immunised devil revealed a 'myelinating Schwann cell' phenotype, reflecting both natural DFT1 cancers and the DFT1 cell line used for the experimental challenge. Comparatively, immunised devils exhibited a 'dedifferentiated mesenchymal' DFT1 phenotype. A third 'immune-enriched' phenotype, characterised by increased PDL1 and CTLA-4 expression, was detected in a DFT1 tumour that arose after immunotherapy. In response to immune pressure, mesenchymal plasticity and upregulation of immune checkpoint molecules are used by human cancers to evade immune responses. Similar mechanisms are associated with immune evasion by DFTD cancers, providing novel insights that will inform modification of DFTD vaccines. As DFT1 and DFT2 are clonal cancers transmitted across genetically distinct hosts, the Tasmanian devil provides a 'natural' disease model for more broadly exploring these immune evasion mechanisms in cancer.


Assuntos
Neoplasias Faciais , Marsupiais , Vacinas , Animais , Neoplasias Faciais/terapia , Humanos , Imunoterapia , Vacinação
8.
Pathogens ; 11(1)2021 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-35055975

RESUMO

Devil Facial Tumour Disease (DFTD) is an emerging infectious disease that provides an excellent example of how diagnostic techniques improve as disease-specific knowledge is generated. DFTD manifests as tumour masses on the faces of Tasmanian devils, first noticed in 1996. As DFTD became more prevalent among devils, karyotyping of the lesions and their devil hosts demonstrated that DFTD was a transmissible cancer. The subsequent routine diagnosis relied on microscopy and histology to characterise the facial lesions as cancer cells. Combined with immunohistochemistry, these techniques characterised the devil facial tumours as sarcomas of neuroectodermal origin. More sophisticated molecular methods identified the origin of DFTD as a Schwann cell, leading to the Schwann cell-specific protein periaxin to discriminate DFTD from other facial lesions. After the discovery of a second facial cancer (DFT2), cytogenetics and the absence of periaxin expression confirmed the independence of the new cancer from DFT1 (the original DFTD). Molecular studies of the two DFTDs led to the development of a PCR assay to differentially diagnose the cancers. Proteomics and transcriptomic studies identified different cell phenotypes among the two DFTD cell lines. Phenotypic differences were also reflected in proteomics studies of extracellular vesicles (EVs), which yielded an early diagnostic marker that could detect DFTD in its latent stage from serum samples. A mesenchymal marker was also identified that could serve as a serum-based differential diagnostic. The emergence of two transmissible cancers in one species has provided an ideal opportunity to better understand transmissible cancers, demonstrating how fundamental research can be translated into applicable and routine diagnostic techniques.

9.
Dev Comp Immunol ; 115: 103882, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33039410

RESUMO

Immune checkpoint immunotherapy is a pillar of human oncology treatment with potential for non-human species. The first checkpoint immunotherapy approved for human cancers targeted the CTLA4 protein. CTLA4 can inhibit T cell activation by capturing and internalizing CD80 and CD86 from antigen presenting cells, a process called trans-endocytosis. Similarly, CD28 can capture CD80 and CD86 via trogocytosis and retain the captured ligands on the surface of the CD28-expressing cells. The wild Tasmanian devil (Sarcophilus harrisii) population has declined by 77% due to transmissible cancers that evade immune defenses despite genetic mismatches between the host and tumors. We used a live cell-based assay to demonstrate that devil CTLA4 and CD28 can capture CD80 and CD86. Mutation of evolutionarily conserved motifs in CTLA4 altered functional interactions with CD80 and CD86 in accordance with patterns observed in other species. These results suggest that checkpoint immunotherapies can be translated to evolutionarily divergent species.


Assuntos
Antígeno B7-1/metabolismo , Antígeno B7-2/metabolismo , Antígenos CD28/metabolismo , Antígeno CTLA-4/metabolismo , Marsupiais/imunologia , Motivos de Aminoácidos/genética , Animais , Antígenos CD28/antagonistas & inibidores , Células CHO , Antígeno CTLA-4/antagonistas & inibidores , Antígeno CTLA-4/genética , Células Cultivadas , Clonagem Molecular , Cricetulus , Espécies em Perigo de Extinção , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Microscopia Intravital , Marsupiais/metabolismo , Mutação , Trogocitose
10.
Sci Adv ; 6(27)2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32937435

RESUMO

Around 40% of humans and Tasmanian devils (Sarcophilus harrisii) develop cancer in their lifetime, compared to less than 10% for most species. In addition, devils are affected by two of the three known transmissible cancers in mammals. Immune checkpoint immunotherapy has transformed human medicine, but a lack of species-specific reagents has limited checkpoint immunology in most species. We developed a cut-and-paste reagent development system and used the fluorescent fusion protein system to show that immune checkpoint interactions are conserved across 160,000,000 years of evolution, CD200 is highly expressed on transmissible tumor cells, and coexpression of CD200R1 can block CD200 surface expression. The system's versatility across species was demonstrated by fusing a fluorescent reporter to a camelid-derived nanobody that binds human programmed death ligand 1. The evolutionarily conserved pathways suggest that naturally occurring cancers in devils and other species can be used to advance our understanding of cancer and immunological tolerance.


Assuntos
Neoplasias Faciais , Marsupiais , Animais , Neoplasias Faciais/metabolismo , Neoplasias Faciais/patologia , Evasão da Resposta Imune , Imunoterapia
11.
Trop Med Infect Dis ; 5(2)2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-32244613

RESUMO

Devil facial tumor disease (DFTD) encompasses two independent transmissible cancers that have killed the majority of Tasmanian devils. The cancer cells are derived from Schwann cells and are spread between devils during biting, a common behavior during the mating season. The Centers for Disease Control and Prevention (CDC) defines a parasite as "An organism that lives on or in a host organism and gets its food from, or at, the expense of its host." Most cancers, including DFTD, live within a host organism and derive resources from its host, and consequently have parasitic-like features. Devil facial tumor disease is a transmissible cancer and, therefore, DFTD shares one additional feature common to most parasites. Through direct contact between devils, DFTD has spread throughout the devil population. However, unlike many parasites, the DFTD cancer cells have a simple lifecycle and do not have either independent, vector-borne, or quiescent phases. To facilitate a description of devil facial tumor disease, this review uses life cycles of parasites as an analogy.

12.
Cell Mol Life Sci ; 77(13): 2507-2525, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31900624

RESUMO

The Tasmanian devil (Sarcophilus harrisii) is the only mammalian species known to be affected by multiple transmissible cancers. Devil facial tumours 1 and 2 (DFT1 and DFT2) are independent neoplastic cell lineages that produce large, disfiguring cancers known as devil facial tumour disease (DFTD). The long-term persistence of wild Tasmanian devils is threatened due to the ability of DFTD cells to propagate as contagious allografts and the high mortality rate of DFTD. Recent studies have demonstrated that both DFT1 and DFT2 cancers originated from founder cells of the Schwann cell lineage, an uncommon origin of malignant cancer in humans. This unprecedented finding has revealed a potential predisposition of Tasmanian devils to transmissible cancers of the Schwann cell lineage. In this review, we compare the molecular nature of human Schwann cells and nerve sheath tumours with DFT1 and DFT2 to gain insights into the emergence of transmissible cancers in the Tasmanian devil. We discuss a potential mechanism, whereby Schwann cell plasticity and frequent wounding in Tasmanian devils combine with an inherent cancer predisposition and low genetic diversity to give rise to transmissible Schwann cell cancers in devils on rare occasions.


Assuntos
Neoplasias Faciais/veterinária , Marsupiais , Animais , Neoplasias Faciais/genética , Neoplasias Faciais/patologia , Humanos , Neoplasias de Bainha Neural/genética , Neoplasias de Bainha Neural/veterinária , Células de Schwann/fisiologia
13.
Cell Mol Life Sci ; 77(9): 1847-1858, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31375869

RESUMO

Devil facial tumour disease (DFTD) comprises two genetically distinct transmissible cancers (DFT1 and DFT2) endangering the survival of the Tasmanian devil (Sarcophilus harrisii) in the wild. DFT1 first arose from a cell of the Schwann cell lineage; however, the tissue-of-origin of the recently discovered DFT2 cancer is unknown. In this study, we compared the transcriptome and proteome of DFT2 tumours to DFT1 and normal Tasmanian devil tissues to determine the tissue-of-origin of the DFT2 cancer. Our findings demonstrate that DFT2 expresses a range of Schwann cell markers and exhibits expression patterns consistent with a similar origin to the DFT1 cancer. Furthermore, DFT2 cells express genes associated with the repair response to peripheral nerve damage. These findings suggest that devils may be predisposed to transmissible cancers of Schwann cell origin. The combined effect of factors such as frequent nerve damage from biting, Schwann cell plasticity and low genetic diversity may allow these cancers to develop on rare occasions. The emergence of two independent transmissible cancers from the same tissue in the Tasmanian devil presents an unprecedented opportunity to gain insight into cancer development, evolution and immune evasion in mammalian species.


Assuntos
Biomarcadores Tumorais/metabolismo , Neoplasias Faciais/veterinária , Marsupiais/fisiologia , Proteoma/análise , Células de Schwann/patologia , Transcriptoma , Animais , Biomarcadores Tumorais/genética , Neoplasias Faciais/genética , Neoplasias Faciais/metabolismo , Neoplasias Faciais/patologia , Humanos , Células de Schwann/metabolismo
15.
Cancer Cell ; 35(1): 125-139.e9, 2019 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-30645971

RESUMO

The marsupial Tasmanian devil (Sarcophilus harrisii) faces extinction due to transmissible devil facial tumor disease (DFTD). To unveil the molecular underpinnings of this transmissible cancer, we combined pharmacological screens with an integrated systems-biology characterization. Sensitivity to inhibitors of ERBB tyrosine kinases correlated with their overexpression. Proteomic and DNA methylation analyses revealed tumor-specific signatures linked to the evolutionary conserved oncogenic STAT3. ERBB inhibition blocked phosphorylation of STAT3 and arrested cancer cells. Pharmacological blockade of ERBB or STAT3 prevented tumor growth in xenograft models and restored MHC class I expression. This link between the hyperactive ERBB-STAT3 axis and major histocompatibility complex class I-mediated tumor immunosurveillance provides mechanistic insights into horizontal transmissibility and puts forward a dual chemo-immunotherapeutic strategy to save Tasmanian devils from DFTD. VIDEO ABSTRACT.


Assuntos
Receptores ErbB/metabolismo , Neoplasias Faciais/tratamento farmacológico , Neoplasias Faciais/veterinária , Proteômica/métodos , Fator de Transcrição STAT3/metabolismo , Bibliotecas de Moléculas Pequenas/administração & dosagem , Animais , Metilação de DNA , Ensaios de Seleção de Medicamentos Antitumorais , Neoplasias Faciais/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Antígenos de Histocompatibilidade Classe I/metabolismo , Marsupiais , Camundongos , Fosforilação , Transdução de Sinais , Bibliotecas de Moléculas Pequenas/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
16.
Immunol Invest ; 48(7): 691-703, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30663448

RESUMO

Introduction: Macrophage phagocytosis of pathogens and tumour cells is an important early event in protection against infectious disease and cancer. As tumour necrosis factor α (TNF) is an important cytokine in macrophage activation, we investigated the involvement of TNF in macrophage phagocytosis of tumour cells. Methods: We used Devil Facial Tumour Disease (DFTD) cancer cells as the target tumour cells. The Tasmanian devil (Sarcophilus harrisii) population is threatened by the transmissible DFTD. Using DFTD cells provided the opportunity to determine if these cells can be phagocytosed and investigate requirement for TNF. As effector cells, bone marrow derived macrophages (BMDMs), generated from C57BL/6 wild type (B6.WT) and C57BL/6 TNF-/- (B6.TNF-/-) mice were used. Phagocytosis of DFTD cells was investigated by confocal microscopy and flow cytometry. Results: DFTD cells were consistently phagocytosed by B6.WT and B6.TNF-/- BMDMs with similar efficiency in vitro. Consequently the DFTD cells are not resistant to phagocytosis. Following activation by exposure to IFNγ and LPS or LPS alone, B6.TNF-/- BMDMs had higher phagocytic efficiency and lower nitric oxide (NO) production compared to wild-type controls. In addition, NO seems to be unlikely to be the involved in phagocytosis efficiency in IFNγ and LPS activated B6.TNF-/- macrophages and consequences thereof. Conclusion: Our results indicate that TNF is not required for IFNγ and LPS or LPS alone activation of macrophage phagocytosis. TNF may negatively regulate macrophage phagocytosis of tumour cells.


Assuntos
Neoplasias Faciais/imunologia , Neoplasias Faciais/veterinária , Macrófagos/imunologia , Fator de Necrose Tumoral alfa/imunologia , Animais , Linhagem Celular Tumoral , Células Cultivadas , Neoplasias Faciais/patologia , Interferon gama/farmacologia , Lipopolissacarídeos/farmacologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Marsupiais , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Óxido Nítrico/metabolismo , Fagocitose , Fator de Necrose Tumoral alfa/deficiência
17.
Integr Comp Biol ; 58(6): 1043-1054, 2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30252058

RESUMO

The Tasmanian devil, a marsupial carnivore, has been restricted to the island state of Tasmania since its extinction on the Australian mainland about 3000 years ago. In the past two decades, this species has experienced severe population decline due to the emergence of devil facial tumor disease (DFTD), a transmissible cancer. During these 20 years, scientists have puzzled over the immunological and evolutionary responses by the Tasmanian devil to this transmissible cancer. Targeted strategies in population management and disease control have been developed as well as comparative processes to identify variation in tumor and host genetics. A multi-disciplinary approach with multi-institutional teams has produced considerable advances over the last decade. This has led to a greater understanding of the molecular pathogenesis and genomic classification of this cancer. New and promising developments in the Tasmanian devil's story include evidence that most immunized, and some wild devils, can produce an immune response to DFTD. Furthermore, epidemiology combined with genomic studies suggest a rapid evolution to the disease and that DFTD will become an endemic disease. Since 1998 there have been more than 350 publications, distributed over 37 Web of Science categories. A unique endemic island species has become an international curiosity that is in the spotlight of integrative and comparative biology research.


Assuntos
Transmissão de Doença Infecciosa/veterinária , Neoplasias Faciais/veterinária , Animais , Transmissão de Doença Infecciosa/prevenção & controle , Neoplasias Faciais/imunologia , Neoplasias Faciais/patologia , Neoplasias Faciais/prevenção & controle , Marsupiais , Tasmânia
18.
Elife ; 72018 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-30103855

RESUMO

Devil Facial Tumour 2 (DFT2) is a recently discovered contagious cancer circulating in the Tasmanian devil (Sarcophilus harrisii), a species which already harbours a more widespread contagious cancer, Devil Facial Tumour 1 (DFT1). Here we show that in contrast to DFT1, DFT2 cells express major histocompatibility complex (MHC) class I molecules, demonstrating that loss of MHC is not necessary for the emergence of a contagious cancer. However, the most highly expressed MHC class I alleles in DFT2 cells are common among host devils or non-polymorphic, reducing immunogenicity in a population sharing these alleles. In parallel, MHC class I loss is emerging in vivo, thus DFT2 may be mimicking the evolutionary trajectory of DFT1. Based on these results we propose that contagious cancers may exploit partial histocompatibility between the tumour and host, but that loss of allogeneic antigens could facilitate widespread transmission of DFT2.


Assuntos
Evolução Biológica , Neoplasias Faciais/genética , Antígenos de Histocompatibilidade Classe I/genética , Alelos , Animais , Neoplasias Faciais/fisiopatologia , Marsupiais/genética , Marsupiais/fisiologia
19.
Oncotarget ; 9(22): 15895-15914, 2018 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-29662615

RESUMO

As a topical cancer immunotherapy, the toll-like receptor 7 ligand imiquimod activates tumor regression via stimulation of immune cell infiltration and cytotoxic responses. Imiquimod also exerts direct pro-apoptotic effects on tumor cells in vitro, but a role for these effects in imiquimod-induced tumor regression remains undefined. We previously demonstrated that cell lines derived from devil facial tumor disease (DFTD), a transmissible cancer threatening the survival of the Tasmanian devil (Sarcophilus harrisii), are sensitive to imiquimod-induced apoptosis. In this study, the pro-apoptotic effects of imiquimod in DFTD have been investigated using RNA-sequencing and label-free quantitative proteomics. This analysis revealed that changes to gene and protein expression in imiquimod treated DFTD cells are consistent with the onset of oxidative and endoplasmic reticulum stress responses, and subsequent activation of the unfolded protein response, autophagy, cell cycle arrest and apoptosis. Imiquimod also regulates the expression of oncogenic pathways, providing a direct mechanism by which this drug may increase tumor susceptibility to immune cytotoxicity in vivo. Our study has provided the first global analysis of imiquimod-induced effects in any tumor cell line. These findings have highlighted the potential of cell stress pathways as therapeutic targets in DFTD, and will allow for improved mechanistic use of imiquimod as a therapy in both the Tasmanian devil and human cancers.

20.
PLoS One ; 13(4): e0196469, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29702669

RESUMO

The Tasmanian devil (Sarcophilus harrisii), the largest extant carnivorous marsupial and endemic to Tasmania, is at the verge of extinction due to the emergence of a transmissible cancer known as devil facial tumour disease (DFTD). DFTD has spread over the distribution range of the species and has been responsible for a severe decline in the global devil population. To protect the Tasmanian devil from extinction in the wild, our group has focused on the development of a prophylactic vaccine. Although this work has shown that vaccine preparations using whole DFTD tumour cells supplemented with adjuvants can induce anti-DFTD immune responses, alternative strategies that induce stronger and more specific immune responses are required. In humans, heat shock proteins (HSPs) derived from tumour cells have been used instead of whole-tumour cell preparations as a source of antigens for cancer immunotherapy. As HSPs have not been studied in the Tasmanian devil, this study presents the first characterisation of HSPs in this marsupial and evaluates the suitability of these proteins as antigenic components for the enhancement of a DFTD vaccine. We show that tissues and cancer cells from the Tasmanian devil express constitutive and inducible HSP. Additionally, this study suggests that HSP derived from DFTD cancer cells are immunogenic supporting the future development of a HSP-based vaccine against DFTD.


Assuntos
Antígenos de Neoplasias/imunologia , Neoplasias Faciais/prevenção & controle , Proteínas de Choque Térmico/metabolismo , Marsupiais/imunologia , Adjuvantes Imunológicos , Animais , Anticorpos/imunologia , Formação de Anticorpos , Vacinas Anticâncer/imunologia , Linhagem Celular , Extinção Biológica , Neoplasias Faciais/tratamento farmacológico , Neoplasias Faciais/imunologia , Imunoterapia , Espectrometria de Massas , Proteoma , Tasmânia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...