Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancer Gene Ther ; 29(12): 1975-1987, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35902728

RESUMO

Silencing of the Apoptosis associated Tyrosine Kinase gene (AATK) has been described in cancer. In our study, we specifically investigated the epigenetic inactivation of AATK in pancreatic adenocarcinoma, lower grade glioma, lung, breast, head, and neck cancer. The resulting loss of AATK correlates with impaired patient survival. Inhibition of DNA methyltransferases (DNMTs) reactivated AATK in glioblastoma and pancreatic cancer. In contrast, epigenetic targeting via the CRISPR/dCas9 system with either EZH2 or DNMT3A inhibited the expression of AATK. Via large-scale kinomic profiling and kinase assays, we demonstrate that AATK acts a Ser/Thr kinase that phosphorylates TP53 at Ser366. Furthermore, whole transcriptome analyses and mass spectrometry associate AATK expression with the GO term 'regulation of cell proliferation'. The kinase activity of AATK in comparison to the kinase-dead mutant mediates a decreased expression of the key cell cycle regulators Cyclin D1 and WEE1. Moreover, growth suppression through AATK relies on its kinase activity. In conclusion, the Ser/Thr kinase AATK represses growth and phosphorylates TP53. Furthermore, expression of AATK was correlated with a better patient survival for different cancer entities. This data suggests that AATK acts as an epigenetically inactivated tumor suppressor gene.


Assuntos
Adenocarcinoma , Proteínas Reguladoras de Apoptose , Neoplasias Pancreáticas , Proteínas Tirosina Quinases , Humanos , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/genética , Ciclina D1/genética , Proteínas Tirosina Quinases/genética , Proteínas Tirosina Quinases/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Neoplasias Pancreáticas
2.
Oncogene ; 39(15): 3114-3127, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32047266

RESUMO

Kidney cancer incidences are rising globally, thereby fueling the demand for targeted therapies and precision medicine. In our previous work, we have identified and characterized the Ras-Association Domain Family encoding ten members that are often aberrantly expressed in human cancers. In this study, we created and analyzed the Rassf10 knockout mice. Here we show that Rassf10 haploinsufficiency promotes neoplasia formation in two established mouse cancer models (Rassf1A-/- and p53-/-). Haploinsufficient Rassf10 knockout mice were significantly prone to various diseases including lymphoma (Rassf1A-/- background) and thymoma (p53-/- background). Especially Rassf10-/- and p53-deficient mice exhibited threefold increased rates of kidney cysts compared with p53-/- controls. Moreover, we observed that in human kidney cancer, RASSF10 is frequently epigenetically inactivated by its CpG island promoter hypermethylation. Primary tumors of renal clear cell and papillary cell carcinoma confirmed that RASSF10 methylation is associated with decreased expression in comparison to normal kidney tissue. In independent data sets, we could validate that RASSF10 inactivation clinically correlated with decreased survival and with progressed disease state of kidney cancer patients and polycystic kidney size. Functionally, we revealed that the loss of Rassf10 was significantly associated with upregulation of KRAS signaling and MYC expression. In summary, we could show that Rassf10 functions as a haploinsufficient tumor suppressor. In combination with other markers, RASSF10 silencing can serve as diagnostic and prognostic cancer biomarker in kidney diseases.


Assuntos
Biomarcadores Tumorais/genética , Inativação Gênica , Neoplasias Renais/genética , Proteínas Supressoras de Tumor/genética , Animais , Carcinogênese/genética , Linhagem Celular Tumoral , Ilhas de CpG/genética , Metilação de DNA , Modelos Animais de Doenças , Progressão da Doença , Regulação Neoplásica da Expressão Gênica , Células HEK293 , Haploinsuficiência , Humanos , Estimativa de Kaplan-Meier , Rim/patologia , Neoplasias Renais/diagnóstico , Neoplasias Renais/mortalidade , Neoplasias Renais/patologia , Masculino , Camundongos , Camundongos Knockout , Prognóstico , Regiões Promotoras Genéticas/genética , Regulação para Cima
3.
Cancers (Basel) ; 11(12)2019 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-31817988

RESUMO

The Ras Association Domain Family (RASSF) encodes members of tumor suppressor genes which are frequently inactivated in human cancers. Here, the function and the regulation of RASSF10, that contains a RA (Ras-association) and two coiled domains, was investigated. We utilized mass spectrometry and immuno-precipitation to identify interaction partners of RASSF10. Additionally, we analyzed the up- and downstream pathways of RASSF10 that are involved in its tumor suppressive function. We report that RASSF10 binds ASPP1 (Apoptosis-stimulating protein of p53) and ASPP2 through its coiled-coils. Induction of RASSF10 leads to increased protein levels of ASPP2 and acts negatively on cell cycle progression. Interestingly, we found that RASSF10 is a target of the EMT (epithelial mesenchymal transition) driver TGFß (Transforming growth factor beta) and that negatively associated genes of RASSF10 are significantly over-represented in an EMT gene set collection. We observed a positive correlation of RASSF10 expression and E-cadherin that prevents EMT. Depletion of RASSF10 by CRISPR/Cas9 technology induces the ability of lung cancer cells to proliferate and to invade an extracellular matrix after TGFß treatment. Additionally, knockdown of RASSF10 or ASPP2 induced constitutive phosphorylation of SMAD2 (Smad family member 2). Moreover, we found that epigenetic reduction of RASSF10 levels correlates with tumor progression and poor survival in human cancers. Our study indicates that RASSF10 acts a TGFß target gene and negatively regulates cell growth and invasion through ASPP2. This data suggests that epigenetic loss of RASSF10 contributes to tumorigenesis by promoting EMT induced by TGFß.

4.
Am J Physiol Gastrointest Liver Physiol ; 283(2): G400-7, 2002 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12121888

RESUMO

Colonic motility is modulated by the 5-hydroxytryptamine (5-HT)(3)-dependent gastrocolonic response and 5-HT(3)-independent peristaltic reflex. We compared descending colon tone responses to antral distension, duodenal lipid perfusion, and colonic distension after double-blind placebo or granisetron in 13 healthy volunteers and nine slow-transit constipated patients. Antral distension (100-300 ml) and duodenal lipids (3 kcal/min) evoked increases in colon tone in volunteers, which were blunted in constipated patients (P < 0.05). Granisetron (10 microg/kg) reduced responses to antral distension and lipids in volunteers and to lipids in constipated patients (P < 0.05). The ascending contraction of the peristaltic reflex was blunted in constipated patients (P < 0.05), whereas descending responses were similar. Granisetron did not modify the peristaltic reflex. Colonic responses to bethanechol were similar in patients and volunteers. In conclusion, antral distension- and duodenal lipid-activated gastrocolonic responses and ascending contractions of the peristaltic reflex are impaired with slow-transit constipation with loss of both 5-HT(3)-dependent and -independent function. Thus abnormalities of neural reflex modulation of colonic motor function may play pathophysiological roles in slow-transit constipation.


Assuntos
Colo/fisiopatologia , Constipação Intestinal/fisiopatologia , Trânsito Gastrointestinal , Peristaltismo , Receptores de Serotonina/metabolismo , Reflexo , Estômago/fisiopatologia , Adulto , Betanecol/farmacologia , Cateterismo , Doença Crônica , Colo/efeitos dos fármacos , Duodeno , Feminino , Humanos , Lipídeos/administração & dosagem , Lipídeos/farmacologia , Agonistas Muscarínicos/farmacologia , Tono Muscular , Músculo Liso/efeitos dos fármacos , Receptores 5-HT3 de Serotonina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...