Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Artigo em Coreano | WPRIM (Pacífico Ocidental) | ID: wpr-24983

RESUMO

PURPOSE: This study validated the musculoskeletal model of the human lower extremity by comparative study between calculated muscle parameters through simulation using modified hill-type model and measured muscle parameters through isokinetic exercise. The relationship between muscle forces and moments participated in motion was quantified from the results of simulation. MATERIALS AND METHODS: For simulation of isokinetic motion, a three-dimensional anatomical knee model was constructed using gait analysis. The EMG-force model was used to determine muscle activation level exciting muscles. The modified Hill-type model was used to calculate individual muscle force and moment in dynamic analysis. This method was validated by comparing analytical data with experimental data. RESULTS: The results showed that there was a significant correlation between calculated torques from simulation and measured torque from isokinetic motion experiments (R=0.97). We also found that muscle forces and moments during knee flexion and extension have nonlinearly proportional or inversely proportional relationship, since lower extremity muscles were simultaneously involved in flexion/extension motion and inner/outer rotation. CONCLUSION: We concluded that the simulation by using musculoskeletal model may be a useful mean to predict and recover musculoskeletal-related diseases, and analyze complicated experiment such as clash condition.


Assuntos
Humanos , Marcha , Articulação do Joelho , Joelho , Extremidade Inferior , Músculos , Torque
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...