Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Org Biomol Chem ; 10(17): 3506-18, 2012 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-22430567

RESUMO

We describe the synthesis of a series of oxy-substituted butenolide spiroacetals and spiro-N,O-acetals by oxidative spirocyclisation of 2-[(4-hydroxy or 4-sulfonamido)butyl]furans. The axial-equatorial preference of each oxy-substituent is investigated (NMR) by an acid-catalysed thermodynamic relay of configuration between the spiro- and oxy-centres. The axial site is preferred for most oxy-substituents at synthetically useful levels. The potential origins of this preference are discussed in terms of a stabilising gauche effect combined with the influence of solvation. These results have relevance to the synthesis of bis(acetylenic)enol ether spiroacetals including AL-1 and related compounds.

2.
Org Biomol Chem ; 8(1): 226-33, 2010 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-20024153

RESUMO

Two routes are described for the synthesis of the sawaranospirolides, stereoisomeric spirolactone ascorbigenins isolated from Chamaecyparis pisifera. Trapping of the keto enal formed by oxidation of a functionalised 2-(4-hydroxybutyl)furan affords a potential butenolide spiroacetal precursor to sawaranospirolides A and C. Alternatively, epoxidation of protected 3-(dihydropyran-2-yl)-3-arylpropanoic acids results in spirolactonisation to generate ent-sawaranospirolide C; a related acid-mediated spirocyclisation gave access to ent-sawaranospirolide D.


Assuntos
Chamaecyparis/química , Compostos de Espiro/síntese química , Ciclização , Oxirredução , Estereoisomerismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...