Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J R Soc Interface ; 9(73): 1774-86, 2012 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-22345156

RESUMO

The nanometre-scale structure of collagen and bioapatite within bone establishes bone's physical properties, including strength and toughness. However, the nanostructural organization within bone is not well known and is debated. Widely accepted models hypothesize that apatite mineral ('bioapatite') is present predominantly inside collagen fibrils: in 'gap channels' between abutting collagen molecules, and in 'intermolecular spaces' between adjacent collagen molecules. However, recent studies report evidence of substantial extrafibrillar bioapatite, challenging this hypothesis. We studied the nanostructure of bioapatite and collagen in mouse bones by scanning transmission electron microscopy (STEM) using electron energy loss spectroscopy and high-angle annular dark-field imaging. Additionally, we developed a steric model to estimate the packing density of bioapatite within gap channels. Our steric model and STEM results constrain the fraction of total bioapatite in bone that is distributed within fibrils at less than or equal to 0.42 inside gap channels and less than or equal to 0.28 inside intermolecular overlap regions. Therefore, a significant fraction of bone's bioapatite (greater than or equal to 0.3) must be external to the fibrils. Furthermore, we observe extrafibrillar bioapatite between non-mineralized collagen fibrils, suggesting that initial bioapatite nucleation and growth are not confined to the gap channels as hypothesized in some models. These results have important implications for the mechanics of partially mineralized and developing tissues.


Assuntos
Densidade Óssea/fisiologia , Colágeno/metabolismo , Cabeça do Úmero/fisiologia , Cabeça do Úmero/ultraestrutura , Modelos Biológicos , Animais , Camundongos , Microscopia Eletrônica de Varredura
2.
Biophys J ; 97(4): 976-85, 2009 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-19686644

RESUMO

Attachment of dissimilar materials is a major challenge because high levels of localized stress may develop at their interfaces. An effective biologic solution to this problem exists at one of nature's most extreme interfaces: the attachment of tendon (a compliant, structural "soft tissue") to bone (a stiff, structural "hard tissue"). The goal of our study was to develop biomechanical models to describe how the tendon-to-bone insertion derives its mechanical properties. We examined the tendon-to-bone insertion and found two factors that give the tendon-to-bone transition a unique grading in mechanical properties: 1), a gradation in mineral concentration, measured by Raman spectroscopy; and 2), a gradation in collagen fiber orientation, measured by polarized light microscopy. Our measurements motivate a new physiological picture of the tissue that achieves this transition, the tendon-to-bone insertion, as a continuous, functionally graded material. Our biomechanical model suggests that the experimentally observed increase in mineral accumulation within collagen fibers can provide significant stiffening of the partially mineralized fibers, but only for concentrations of mineral above a "percolation threshold" corresponding to formation of a mechanically continuous mineral network within each collagen fiber (e.g., the case of mineral connectivity extending from one end of the fiber to the other). Increasing dispersion in the orientation distribution of collagen fibers from tendon to bone is a second major determinant of tissue stiffness. The combination of these two factors may explain the nonmonotonic variation of stiffness over the length of the tendon-to-bone insertion reported previously. Our models explain how tendon-to-bone attachment is achieved through a functionally graded material composition, and provide targets for tissue engineered surgical interventions and biomimetic material interfaces.


Assuntos
Osso e Ossos/fisiologia , Calcificação Fisiológica/fisiologia , Colágeno/fisiologia , Minerais/metabolismo , Modelos Biológicos , Tendões/fisiologia , Adesividade , Animais , Simulação por Computador , Humanos
3.
Appl Spectrosc ; 62(12): 1285-94, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19094386

RESUMO

We applied Raman spectroscopy to monitor the distribution of mineral and the degree of mineralization across the tendon-bone insertion site in the shoulders of five rats. We acquired Raman spectra from 100 to 4,000 Deltacm(-1) on individual 1 microm points across the 120 microm wide transition zone of each tissue sample and identified all the peaks detected in pure tendon and in pure bone, as well as in the transition zone. The intensity of the 960 Deltacm(-1) P-O stretch for apatite (normalized to either the 2,940 Deltacm(-1) C-H stretch or the 1,003 Deltacm(-1) C-C stretch for collagen) was used as an indicator of the abundance of mineral. We relate the observed histological morphology in the tissue thin section with the observed Raman peaks for both the organic component (mostly collagen) and the inorganic component (a carbonated form of the mineral apatite) and discuss spectroscopic issues related to peak deconvolution and quantification of overlapping Raman peaks. We show that the mineral-to-collagen ratio at the insertion site increases linearly (R(2) = 0.8 for five samples) over the distance of 120 microm from tendon to bone, rather than abruptly, as previously inferred from histological observations. In addition, narrowing of the 960 Deltacm(-1) band across the traverse indicates that the crystalline ordering within the apatite increases concomitantly with the degree of mineralization. This finding of mineral gradation has important clinical implications and may explain why the uninjured tendon-to-bone connection of the rotator cuff can sustain very high loads without failure. Our finding is also consistent with recent mechanical models and calculations developed to better understand the materials properties of this unusually strong interface.


Assuntos
Calcinose , Manguito Rotador/metabolismo , Análise Espectral Raman/métodos , Traumatismos dos Tendões/metabolismo , Animais , Osso e Ossos/química , Fosfatos de Cálcio/análise , Fosfatos de Cálcio/metabolismo , Colágeno Tipo I/análise , Colágeno Tipo I/metabolismo , Modelos Animais de Doenças , Ratos , Ratos Endogâmicos F344 , Manguito Rotador/química , Manguito Rotador/patologia , Articulação do Ombro/metabolismo , Articulação do Ombro/patologia , Traumatismos dos Tendões/patologia , Tendões/química , Cicatrização
4.
J Bone Miner Res ; 22(10): 1548-56, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17576168

RESUMO

UNLABELLED: Stress fractures of varying severity were created using a rat model of skeletal fatigue loading. Periosteal woven bone formed in proportion to the level of bone damage, resulting in the rapid recovery of whole bone strength independent of stress fracture severity. INTRODUCTION: A hard periosteal callus is a hallmark of stress fracture healing. The factors that regulate the formation of this woven bone callus are poorly understood. Our objective was to produce stress fractures of varying severity and to assess the woven bone response and recovery of bone strength. MATERIALS AND METHODS: We used the forelimb compression model to create stress fractures of varying severity in 192 adult rats. Forelimbs were loaded in fatigue until the displacement reached 30%, 45%, 65%, or 85% of fracture. The osteogenic responses of loaded and contralateral control ulnas were assessed 7 and 14 days after loading using pQCT, microCT, mechanical testing, histomorphometry, and Raman spectroscopy. RESULTS: Loading stimulated the formation of periosteal woven bone that was maximal near the ulnar midshaft and transitioned to lamellar bone away from the midshaft. Woven bone area increased in a dose-response manner with increasing fatigue displacement. Whole bone strength was partially recovered at 7 days and fully recovered at 14 days, regardless of initial stress fracture severity. The density of the woven bone increased by 80% from 7 to 14 days, caused in part by a 30% increase in the mineral:collagen ratio of the woven bone tissue. CONCLUSIONS: Functional healing of a stress fracture, as evidenced by recovery of whole bone strength, occurred within 2 wk, regardless of stress fracture severity. Partial recovery of strength in the first week was attributed to the rapid formation of a collar of woven bone that was localized to the site of bone damage and whose size depended on the level of initial damage. Complete recovery of strength in the second week was caused by woven bone densification. For the first time, we showed that woven bone formation occurs as a dose-dependent response after damaging mechanical loading of bone.


Assuntos
Calo Ósseo/crescimento & desenvolvimento , Consolidação da Fratura/fisiologia , Fraturas de Estresse/patologia , Animais , Materiais Biomiméticos/farmacologia , Calo Ósseo/efeitos dos fármacos , Consolidação da Fratura/efeitos dos fármacos , Fraturas de Estresse/tratamento farmacológico , Masculino , Ratos , Ratos Endogâmicos F344 , Fatores de Tempo , Tomógrafos Computadorizados
5.
Astrobiology ; 6(4): 625-43, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16916287

RESUMO

This experimental study investigated how the dynamics of the crystallization of the evaporite mineral halite could affect the accumulation and preservation of organic macromolecules present in the crystallizing solution. Halite was grown under controlled conditions in the presence of polymer nanoparticles that acted as an analog to protocellular material. Optical microscopy, atomic force microscopy, and laser scanning confocal fluorescence microscopy were used to trace the localization of the nanoparticles during and after growth of halite crystals. The present study revealed that the organic nanoparticles were not regularly incorporated within the halite, but were very concentrated on its surfaces. Their distribution was controlled dominantly by the morphologic surface features of the mineral rather than by specific molecular interactions with an atomic plane of the mineral. This means that the distribution of organic molecules was controlled by surfaces like those of halite's evaporitic growth forms. The experiments with halite also demonstrated that a mineral need not continuously incorporate organic molecules during its crystallization to preserve those molecules: After rejection by (non-incorporation into) the crystallizing halite, the organic nanoparticles increased in concentration in the evaporating brine. They ultimately either adsorbed in rectilinear patterns onto the hopper-enhanced surfaces and along discontinuities within the crystals, or they were encapsulated within fluid inclusions. Of additional importance in origin-of-life considerations is the fact that halite in the natural environment rapidly can change its role from that of a protective repository (in the absence of water) to that of a source of organic particles (as soon as water is present) when the mineral dissolves.


Assuntos
Origem da Vida , Cloreto de Sódio/química , Cristalização , Exobiologia , Microscopia de Força Atômica , Microscopia Confocal , Nanoestruturas , Propriedades de Superfície
6.
J Bone Miner Res ; 21(1): 78-88, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16355276

RESUMO

UNLABELLED: To examine the link between bone material properties and skeletal fragility, we analyzed the mechanical, histological, biochemical, and spectroscopic properties of bones from a murine model of skeletal fragility (SAMP6). Intact bones from SAMP6 mice are weak and brittle compared with SAMR1 controls, a defect attributed to reduced strength of the bone matrix. The matrix weakness is attributed primarily to poorer organization of collagen fibers and reduced collagen content. INTRODUCTION: The contribution of age-related changes in tissue material properties to skeletal fragility is poorly understood. We previously reported that bones from SAMP6 mice are weak and brittle versus age-matched controls. Our present objectives were to use the SAMP6 mouse to assess bone material properties in a model of skeletal fragility and to relate defects in the mechanical properties of bone to the properties of demineralized bone and to the structure and organization of collagen and mineral. MATERIALS AND METHODS: Femora from 4- and 12-month-old SAMR1 (control) and SAMP6 mice were analyzed using bending and torsional mechanical testing of intact bones, tensile testing of demineralized bone, quantitative histology (including collagen fiber orientation), collagen cross-links biochemistry, and Raman spectroscopic analysis of mineral and collagen. RESULTS: Intact bones from SAMP6 mice have normal elastic properties but inferior failure properties, with 60% lower fracture energy versus SAMR1 controls. The strength defect in SAMP6 bones was associated with a 23% reduction in demineralized bone strength, which in turn was associated with poorer collagen fiber organization, lower collagen content, and higher hydroxylysine levels. However, SAMP6 have normal levels of collagen cross-links and normal apatite mineral structure. CONCLUSIONS: Bones from SAMP6 osteoporotic mice are weak and brittle because of a defect in the strength of the bone matrix. This defect is attributed primarily to poorer organization of collagen fibers and reduced collagen content. These findings highlight the role of the collagen component of the bone matrix in influencing skeletal fragility.


Assuntos
Reabsorção Óssea/patologia , Colágeno/metabolismo , Fêmur/patologia , Osteoporose/patologia , Animais , Reabsorção Óssea/genética , Reabsorção Óssea/metabolismo , Fêmur/metabolismo , Masculino , Camundongos , Camundongos Mutantes , Osteoporose/genética , Osteoporose/metabolismo , Resistência à Tração
7.
Biomacromolecules ; 6(3): 1289-98, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-15877344

RESUMO

Acidic proteins from many biogenic minerals are implicated in directing the formation of crystal polymorphs and morphologies. We characterize the first extremely acidic proteins purified from biomineralized aragonite. These abalone nacre proteins are two variants of 8.7 and 7.8 kDa designated AP8 (for aragonite proteins of approximately 8 kDa). The AP8 proteins have compositions dominated by Asx ( approximately 35 mol %) and Gly ( approximately 40 mol %) residues, suggesting that their structures have high Ca(2+)-binding capacity and backbone flexibility. The growth of asymmetrically rounded CaCO(3) crystals in the presence of AP8 reveals that both proteins preferentially interact with specific locations on the crystal surface. In contrast, CaCO(3) crystals grown with nacre proteins depleted of AP8 retain the morphology of unmodified calcite rhombohedra. Our observations thus identify sites of protein-mineral interaction and provide evidence to support the long-standing theory that acidic proteins are more effective crystal-modulators than other proteins from the same biomineralized material.


Assuntos
Ácidos , Carbonato de Cálcio/química , Moluscos/química , Proteínas/química , Animais , Carbonato de Cálcio/isolamento & purificação , Cristalização , Concentração de Íons de Hidrogênio , Proteínas/isolamento & purificação
9.
Biomaterials ; 25(2): 229-38, 2004 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-14585710

RESUMO

Using laser Raman microprobe spectroscopy, we have characterized the degree of hydroxylation and the state of atomic order of several natural and synthetic calcium phosphate phases, including apatite of biological (human bone, heated human bone, mouse bone, human and boar dentin, and human and boar enamel), geological, and synthetic origin. Common belief holds that all the studied phases are hydroxylapatite, i.e., an OH-containing mineral with the composition Ca10(PO4)6(OH)2. We observe, however, that OH-incorporation into the apatite crystal lattice is reduced for nanocrystalline samples. Among the biological samples, no OH-band was detected in the Raman spectrum of bone (the most nanocrystalline biological apatite), whereas a weak OH-band occurs in dentin and a strong OH-band in tooth enamel. We agree with others, who used NMR, IR spectroscopy, and inelastic neutron scattering, that-contrary to the general medical nomenclature-bone apatite is not hydroxylated and therefore not hydroxylapatite. Crystallographically, this observation is unexpected; it therefore remains unclear what atom(s) occupy the OH-site and how charge balance is maintained within the crystal. For non-bone apatites that do show an OH-band in their Raman spectra, there is a strong correlation between the concentration of hydroxyl groups (based on the ratio of the areas of the 3572 deltacm(-1) OH-peak to the 960 deltacm(-1) P-O phosphate peak) and the crystallographic degree of atomic order (based on the relative width of the 960 deltacm(-1) P-O phosphate peak) of the samples. We hypothesize that the body biochemically imposes a specific state of atomic order and crystallinity (and, thus, concentration of hydroxyl) on its different apatite precipitates (bone, dentin, enamel) in order to enhance their ability to carry out tissue-specific functions.


Assuntos
Apatitas/química , Materiais Biocompatíveis/química , Osso e Ossos/química , Animais , Humanos , Hidróxidos/química , Camundongos , Análise Espectral Raman , Suínos
10.
Astrobiology ; 3(4): 727-38, 2003.
Artigo em Inglês | MEDLINE | ID: mdl-14987478

RESUMO

To identify microscopic particles as actual fossil material, it would be useful to have a means of unambiguously recognizing which carbonaceous deposits found in rocks are residues from once-living organisms (i.e., biogenic material). Those residues consist of many different, mostly aromatic (i.e., benzene ring-containing), C-O-H-dominated molecules, and typically are called kerogens. Raman microprobe spectroscopy can be applied to minute samples of ancient kerogens either isolated from their host rocks or in situ in thin section. The Raman spectra generated by monochromatic blue or green laser excitation (e.g., at 488, 514, 532 nm) typically show only generic spectral features indicative of discontinuous arrays of condensed benzene rings (i.e., structures referred to as "disordered carbonaceous material"). Thus, despite the complex chemistry of kerogens and the expected presence of H, O, and N, the Raman spectra typically do not show any evidence of functional groups, such as CH, CH(2), CH(3), CO, and CN. Moreover, the same kind of Raman spectral signature as is obtained from kerogens also is obtained from many other poorly ordered carbonaceous materials that arise through nonbiological processes, such as in situ heating of organic or inorganic compounds (whether or not they are of biological origin), metamorphic mobilization of preexisting carbon compounds, and high-temperature precipitation from hydrothermal solutions. Thus, neither a Raman spectrum, nor a Raman image derived from such spectra, definitively can identify a sample as "kerogen," but only as "disordered carbonaceous material." Clearly, the fact that small, opaque grains consist of disordered carbonaceous material is necessary, but not sufficient, to prove them to be residues of cellular material and, thus, biogenic.


Assuntos
Carbono/análise , Análise Espectral Raman/métodos , Isótopos de Carbono , Poeira Cósmica , Evolução Química , Evolução Planetária , Meio Ambiente Extraterreno , Grafite , Temperatura Alta , Hidrogênio , Vida , Marte , Meteoroides , Modelos Teóricos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...