Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cryo Letters ; 34(2): 137-48, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23625082

RESUMO

Differences in the level of cold acclimation and cryoprotection estimated as ice nucleation activity in snow algae (Chlamydomonas cf. nivalis and Chloromonas nivalis), lichen symbiotic algae (Trebouxia asymmetrica, Trebouxia erici and Trebouxia glomerata), and a mesophilic strain (Chlamydomonas reinhardti) were evaluated. Ice nucleation activity was measured using the freezing droplet method. Measurements were performed using suspensions of cells of A750 (absorbance at 750 nm) ~ 1, 0.1, 0.01 and 0.001 dilutions for each strain. The algae had lower ice nucleation activity, with the exception of Chloromonas nivalis contaminated by bacteria. The supercooling points of the snow algae were higher than those of lichen photobionts. The supercooling points of both, mesophilic and snow Chlamydomonas strains were similar. The lower freezing temperatures of the lichen algae may reflect either the more extreme and more variable environmental conditions of the original localities or the different cellular structure of the strains examined.


Assuntos
Clorófitas/fisiologia , Gelo/análise , Aclimatação , Chlamydomonas/química , Chlamydomonas/citologia , Chlamydomonas/fisiologia , Clorófitas/química , Clorófitas/citologia , Cristalização , Congelamento , Líquens/fisiologia , Simbiose
2.
Arch Insect Biochem Physiol ; 82(2): 59-70, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23143920

RESUMO

The Arctic springtail, Megaphorura arctica, survives sub-zero temperatures in a dehydrated state via trehalose-dependent cryoprotective dehydration. Regulation of trehalose biosynthesis is complex; based in part on studies in yeast and fungi, its connection with oxidative stress caused by exposure of cells to oxidants, such as hydrogen peroxide (H2O2), or dehydration, is well documented. In this respect, we measured the amount of H2O2 and antioxidant enzyme activities (superoxide dismutases: copper, zinc--CuZnSOD and manganese containing--MnSOD, and catalase--CAT), as the regulatory components determining H2O2 concentrations, in Arctic springtails incubated at 5 °C (control) versus -2 °C (threshold temperature for trehalose biosynthesis). Because ecdysone also stimulates trehalose production in insects and regulates the expression of genes involved in redox homeostasis and antioxidant protection in Drosophila, we measured the levels of the active physiological form of ecdysone--20-hydroxyecdysone (20-HE). Significantly elevated H2O2 and 20-HE levels were observed in M. arctica incubated at -2 °C, supporting a link between ecdysone, H2O2, and trehalose levels during cryoprotective dehydration. CAT activity was found to be significantly lower in M. arctica incubated at -2 °C versus 5 °C, suggesting reduced H2O2 breakdown. Furthermore, measurement of the free radical composition in Arctic springtails incubated at 5 °C (controls) versus -2 °C by Electron Paramagnetic Resonance spectroscopy revealed melanin-derived free radicals at -2 °C, perhaps an additional source of H2O2. Our results suggest that H2O2 and ecdysone play important roles in the cryoprotective dehydration process in M. arctica, linked with the regulation of trehalose biosynthesis.


Assuntos
Artrópodes/fisiologia , Ecdisterona/metabolismo , Peróxido de Hidrogênio/metabolismo , Animais , Regiões Árticas , Catalase/metabolismo , Temperatura Baixa , Dessecação , Espectroscopia de Ressonância de Spin Eletrônica , Radicais Livres/metabolismo , Proteínas de Insetos/metabolismo , Superóxido Dismutase/metabolismo , Svalbard , Trealose/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...