Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS ES T Water ; 3(1): 16-29, 2023 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-37552720

RESUMO

Wastewater-based epidemiology (WBE) has been utilized for outbreak monitoring and response efforts in university settings during the coronavirus disease 2019 (COVID-19) pandemic. However, few studies examined the impact of university policies on the effectiveness of WBE to identify cases and mitigate transmission. The objective of this study was to retrospectively assess relationships between severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) wastewater outcomes and COVID-19 cases in residential buildings of a large university campus across two academic semesters (August 2020-May 2021) under different COVID-19 mitigation policies. Clinical case surveillance data of student residents were obtained from the university COVID-19 response program. We collected and processed building-level wastewater for detection and quantification of SARS-CoV-2 RNA by RT-qPCR. The odds of obtaining a positive wastewater sample increased with COVID-19 clinical cases in the fall semester (OR = 1.50, P value = 0.02), with higher odds in the spring semester (OR = 2.63, P value < 0.0001). We observed linear associations between SARS-CoV-2 wastewater concentrations and COVID-19 clinical cases (parameter estimate = 1.2, P value = 0.006). Our study demonstrated the effectiveness of WBE in the university setting, though it may be limited under different COVID-19 mitigation policies. As a complementary surveillance tool, WBE should be accompanied by robust administrative and clinical testing efforts for the COVID-19 pandemic response.

2.
Chemosphere ; 295: 133703, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35066078

RESUMO

As the prevalence of obesity has steadily increased on a global scale, research has shifted to explore potential contributors to this pandemic beyond overeating and lack of exercise. Environmental chemical contaminants, known as obesogens, alter metabolic processes and exacerbate the obese phenotype. Diethylhexyl phthalate (DEHP) is a common chemical plasticizer found in medical supplies, food packaging, and polyvinyl materials, and has been identified as a probable obesogen. This study investigated the hypothesis that co-exposure to DEHP and overfeeding would result in decreased lipid mobilization and physical fitness in Danio rerio (zebrafish). Four treatment groups were randomly assigned: Regular Fed (control, 10 mg/fish/day with 0 mg/kg DEHP), Overfed (20 mg/fish/day with 0 mg/kg DEHP), Regular Fed + DEHP (10 mg/fish/day with 3 mg/kg DEHP), Overfed + DEHP (20 mg/fish/day with 3 mg/kg DEHP). After 24 weeks, swim tunnel assays were conducted on half of the zebrafish from each treatment to measure critical swimming speeds (Ucrit); the other fish were euthanized without swimming. Body mass index (BMI) was measured, and tissues were collected for blood lipid characterization and gene expression analyses. Co-exposure to DEHP and overfeeding decreased swim performance as measured by Ucrit. While no differences in blood lipids were observed with DEHP exposure, differential expression of genes related to lipid metabolism and utilization in the gastrointestinal and liver tissue suggests alterations in metabolism and lipid packaging, which may impact utilization and ability to mobilize lipid reserves during physical activity following chronic exposures.


Assuntos
Dietilexilftalato , Peixe-Zebra , Animais , Dietilexilftalato/metabolismo , Dietilexilftalato/toxicidade , Mobilização Lipídica , Aptidão Física , Plastificantes/metabolismo , Plastificantes/toxicidade , Peixe-Zebra/metabolismo
3.
Front Microbiol ; 12: 567408, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33776947

RESUMO

Aquatic ecosystems are under increasing stress from global anthropogenic and natural changes, including climate change, eutrophication, ocean acidification, and pollution. In this critical review, we synthesize research on the microbiota of aquatic vertebrates and discuss the impact of emerging stressors on aquatic microbial communities using two case studies, that of toxic cyanobacteria and microplastics. Most studies to date are focused on host-associated microbiomes of individual organisms, however, few studies take an integrative approach to examine aquatic vertebrate microbiomes by considering both host-associated and free-living microbiota within an ecosystem. We highlight what is known about microbiota in aquatic ecosystems, with a focus on the interface between water, fish, and marine mammals. Though microbiomes in water vary with geography, temperature, depth, and other factors, core microbial functions such as primary production, nitrogen cycling, and nutrient metabolism are often conserved across aquatic environments. We outline knowledge on the composition and function of tissue-specific microbiomes in fish and marine mammals and discuss the environmental factors influencing their structure. The microbiota of aquatic mammals and fish are highly unique to species and a delicate balance between respiratory, skin, and gastrointestinal microbiota exists within the host. In aquatic vertebrates, water conditions and ecological niche are driving factors behind microbial composition and function. We also generate a comprehensive catalog of marine mammal and fish microbial genera, revealing commonalities in composition and function among aquatic species, and discuss the potential use of microbiomes as indicators of health and ecological status of aquatic ecosystems. We also discuss the importance of a focus on the functional relevance of microbial communities in relation to organism physiology and their ability to overcome stressors related to global change. Understanding the dynamic relationship between aquatic microbiota and the animals they colonize is critical for monitoring water quality and population health.

4.
Environ Toxicol Chem ; 39(5): 967-985, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32266737

RESUMO

Cancer is the second leading cause of death worldwide, with 9.6 million cancer-related deaths in 2018. Cancer incidence has increased over time, and so has the prescription rate of chemotherapeutic drugs. These pharmaceuticals, known as antineoplastic agents, enter the aquatic environment via human excretion and wastewater. The objectives of the present critical review were to investigate the risk of antineoplastics to aquatic species and to summarize the current state of knowledge regarding their levels in the environment, because many antineoplastics are not adequately removed during wastewater treatment. We conducted 2 separate literature reviews to synthesize data on the global environmental prevalence and toxicity of antineoplastics. The antineoplastics most frequently detected in the environment included cyclophosphamide, ifosfamide, tamoxifen, methotrexate, and 5-fluorouracil; all were detectable in multiple water sources, including effluent and surface waters. These antineoplastics span 3 different mechanistic classes, with cyclophosphamide and ifosfamide classified as alkylating agents, tamoxifen as a hormonal agent, and methotrexate and 5-fluorouracil as antimetabolites. Studies that characterize the risk of antineoplastics released into aquatic environments are scarce. We summarize the biological impacts of the most environmentally prevalent antineoplastics on aquatic organisms and propose an adverse outcome pathway for cyclophosphamide and ifosfamide, 2 widely prescribed drugs with a similar immunotoxic mode of action. Acute and chronic ecotoxicity studies using aquatic models are needed for risk characterization of antineoplastics. Environ Toxicol Chem 2020;39:967-985. © 2020 SETAC.


Assuntos
Antineoplásicos/farmacologia , Organismos Aquáticos/efeitos dos fármacos , Monitoramento Ambiental , Terapia de Imunossupressão , Testes de Toxicidade , Poluentes Químicos da Água/toxicidade
5.
Environ Toxicol Chem ; 37(11): 2758-2775, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30094867

RESUMO

The microbiome plays an essential role in the health and onset of diseases in all animals, including humans. The microbiome has emerged as a central theme in environmental toxicology because microbes interact with the host immune system in addition to its role in chemical detoxification. Pathophysiological changes in the gastrointestinal tissue caused by ingested chemicals and metabolites generated from microbial biodegradation can lead to systemic adverse effects. The present critical review dissects what we know about the impacts of environmental contaminants on the microbiome of aquatic species, with special emphasis on the gut microbiome. We highlight some of the known major gut epithelium proteins in vertebrate hosts that are targets for chemical perturbation, proteins that also directly cross-talk with the microbiome. These proteins may act as molecular initiators for altered gut function, and we propose a general framework for an adverse outcome pathway that considers gut dysbiosis as a major contributing factor to adverse apical endpoints. We present 2 case studies, nanomaterials and hydrocarbons, with special emphasis on the Deepwater Horizon oil spill, to illustrate how investigations into the microbiome can improve understanding of adverse outcomes. Lastly, we present strategies to functionally relate chemical-induced gut dysbiosis with adverse outcomes because this is required to demonstrate cause-effect relationships. Further investigations into the toxicant-microbiome relationship may prove to be a major breakthrough for improving animal and human health. Environ Toxicol Chem 2018;37:2758-2775. © 2018 SETAC.


Assuntos
Saúde Ambiental , Microbioma Gastrointestinal , Toxicologia , Poluição da Água/análise , Animais , Biodiversidade , Doença , Humanos
6.
Environ Toxicol Chem ; 36(6): 1661-1666, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-27925281

RESUMO

Nano-titanium dioxide (TiO2 ) is the most widely used form of nanoparticles in commercial industry and comes in 2 main configurations: rutile and anatase. Rutile TiO2 is used in ultraviolet (UV) screening applications, whereas anatase TiO2 crystals have a surface defect that makes them photoreactive. There are numerous reports in the literature of photo-induced toxicity to aquatic organisms following coexposure to anatase nano-TiO2 and UV. All natural freshwater contains varying amounts of natural organic matter (NOM), which can drive UV attenuation and quench reactive oxygen species (ROS) in aquatic ecosystems. The present research examined how NOM alters the photo-induced toxicity of anatase nano-TiO2 . Daphnia magna neonates were coexposed to NOM and photoexcited anatase nano-TiO2 for 48 h. Natural organic matter concentrations as low as 4 mg/L reduced anatase nano-TiO2 toxicity by nearly 100%. These concentrations of NOM attenuated UV by <10% in the exposure system. However, ROS production measured using a fluorescence assay was significantly reduced in a NOM concentration--dependent manner. Taken together, these data suggest that NOM reduces anatase nano-TiO2 toxicity via an ROS quenching mechanism and not by attenuation of UV. Environ Toxicol Chem 2017;36:1661-1666. © 2016 SETAC.


Assuntos
Daphnia/efeitos dos fármacos , Nanopartículas Metálicas/toxicidade , Titânio/toxicidade , Animais , Substâncias Húmicas , Luz , Nanopartículas/toxicidade , Espécies Reativas de Oxigênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...