Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Med ; 29(12): 3212-3223, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37957382

RESUMO

Non-suppressible HIV-1 viremia (NSV) is defined as persistent low-level viremia on antiretroviral therapy (ART) without evidence of ART non-adherence or significant drug resistance. Unraveling the mechanisms behind NSV would broaden our understanding of HIV-1 persistence. Here we analyzed plasma virus sequences in eight ART-treated individuals with NSV (88% male) and show that they are composed of large clones without evidence of viral evolution over time in those with longitudinal samples. We defined proviruses that match plasma HIV-1 RNA sequences as 'producer proviruses', and those that did not as 'non-producer proviruses'. Non-suppressible viremia arose from expanded clones of producer proviruses that were significantly larger than the genome-intact proviral reservoir of ART-suppressed individuals. Integration sites of producer proviruses were enriched in proximity to the activating H3K36me3 epigenetic mark. CD4+ T cells from participants with NSV demonstrated upregulation of anti-apoptotic genes and downregulation of pro-apoptotic and type I/II interferon-related pathways. Furthermore, participants with NSV showed significantly lower HIV-specific CD8+ T cell responses compared with untreated viremic controllers with similar viral loads. We identified potential critical host and viral mediators of NSV that may represent targets to disrupt HIV-1 persistence.


Assuntos
Infecções por HIV , Soropositividade para HIV , HIV-1 , Humanos , Masculino , Feminino , HIV-1/genética , Viremia , Provírus/genética , Provírus/metabolismo , Infecções por HIV/tratamento farmacológico , Linfócitos T CD4-Positivos , RNA Viral , Carga Viral
2.
medRxiv ; 2023 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-37034605

RESUMO

Non-suppressible HIV-1 viremia (NSV) can occur in persons with HIV despite adherence to combination antiretroviral therapy (ART) and in the absence of significant drug resistance. Here, we show that plasma NSV sequences are comprised primarily of large clones without evidence of viral evolution over time. We defined proviruses that contribute to plasma viremia as "producer", and those that did not as "non-producer". Compared to ART-suppressed individuals, NSV participants had a significantly larger producer reservoir. Producer proviruses were enriched in chromosome 19 and in proximity to the activating H3K36me3 epigenetic mark. CD4+ cells from NSV participants demonstrated upregulation of anti-apoptotic genes and downregulation of pro-apoptotic and type I/II interferon-related pathways. Furthermore, NSV participants showed no elevation in HIV-specific CD8+ cell responses and producer proviruses were enriched for HLA escape mutations. We identified critical host and viral mediators of NSV that represent potential targets to disrupt HIV persistence and promote viral silencing.

3.
Proc Natl Acad Sci U S A ; 118(37)2021 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-34433692

RESUMO

The hallmark of severe COVID-19 is an uncontrolled inflammatory response, resulting from poorly understood immunological dysfunction. We hypothesized that perturbations in FoxP3+ T regulatory cells (Treg), key enforcers of immune homeostasis, contribute to COVID-19 pathology. Cytometric and transcriptomic profiling revealed a distinct Treg phenotype in severe COVID-19 patients, with an increase in Treg proportions and intracellular levels of the lineage-defining transcription factor FoxP3, correlating with poor outcomes. These Tregs showed a distinct transcriptional signature, with overexpression of several suppressive effectors, but also proinflammatory molecules like interleukin (IL)-32, and a striking similarity to tumor-infiltrating Tregs that suppress antitumor responses. Most marked during acute severe disease, these traits persisted somewhat in convalescent patients. A screen for candidate agents revealed that IL-6 and IL-18 may individually contribute different facets of these COVID-19-linked perturbations. These results suggest that Tregs may play nefarious roles in COVID-19, by suppressing antiviral T cell responses during the severe phase of the disease, and by a direct proinflammatory role.


Assuntos
COVID-19/etiologia , Linfócitos T Reguladores/fisiologia , Adulto , Idoso , Linfócitos T CD4-Positivos/virologia , Feminino , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Humanos , Inflamação/metabolismo , Inflamação/virologia , Interleucina-18/genética , Interleucina-18/metabolismo , Subunidade alfa de Receptor de Interleucina-2/genética , Subunidade alfa de Receptor de Interleucina-2/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Linfócitos do Interstício Tumoral/fisiologia , Masculino , Pessoa de Meia-Idade , Índice de Gravidade de Doença , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/virologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
4.
bioRxiv ; 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-33330871

RESUMO

The hallmark of severe COVID-19 disease has been an uncontrolled inflammatory response, resulting from poorly understood immunological dysfunction. We explored the hypothesis that perturbations in FoxP3+ T regulatory cells (Treg), key enforcers of immune homeostasis, contribute to COVID-19 pathology. Cytometric and transcriptomic profiling revealed a distinct Treg phenotype in severe COVID-19 patients, with an increase in both Treg proportions and intracellular levels of the lineage-defining transcription factor FoxP3, which correlated with poor outcomes. Accordingly, these Tregs over-expressed a range of suppressive effectors, but also pro-inflammatory molecules like IL32. Most strikingly, they acquired similarity to tumor-infiltrating Tregs, known to suppress local anti-tumor responses. These traits were most marked in acute patients with severe disease, but persisted somewhat in convalescent patients. These results suggest that Tregs may play nefarious roles in COVID-19, via suppressing anti-viral T cell responses during the severe phase of the disease, and/or via a direct pro-inflammatory role.

5.
Science ; 364(6439): 480-484, 2019 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-31048489

RESUMO

Mutationally constrained epitopes of variable pathogens represent promising targets for vaccine design but are not reliably identified by sequence conservation. In this study, we employed structure-based network analysis, which applies network theory to HIV protein structure data to quantitate the topological importance of individual amino acid residues. Mutation of residues at important network positions disproportionately impaired viral replication and occurred with high frequency in epitopes presented by protective human leukocyte antigen (HLA) class I alleles. Moreover, CD8+ T cell targeting of highly networked epitopes distinguished individuals who naturally control HIV, even in the absence of protective HLA alleles. This approach thereby provides a mechanistic basis for immune control and a means to identify CD8+ T cell epitopes of topological importance for rational immunogen design, including a T cell-based HIV vaccine.


Assuntos
Vacinas contra a AIDS/genética , Vacinas contra a AIDS/imunologia , Síndrome da Imunodeficiência Adquirida/prevenção & controle , Linfócitos T CD8-Positivos/imunologia , Epitopos de Linfócito T/genética , Epitopos de Linfócito T/imunologia , HIV-1/imunologia , Alelos , Sequência Conservada , Antígenos HLA-B/genética , Antígenos HLA-B/imunologia , Antígenos de Histocompatibilidade Classe I/genética , Antígenos de Histocompatibilidade Classe I/imunologia , Humanos , Mutação , Proteoma/genética , Proteoma/imunologia , Replicação Viral , Produtos do Gene gag do Vírus da Imunodeficiência Humana
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...