Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 7(44): eabh2837, 2021 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-34714676

RESUMO

Late accretion describes the final addition of Earth's mass following Moon formation and includes a period of Late Heavy Bombardment (LHB), which occurred either as a short-lived cataclysm triggered by a late giant planet orbital instability or a declining bombardment during late accretion. Using genetically characteristic ruthenium and molybdenum isotope compositions of lunar impact­derived rocks, we show that the impactors during the LHB and the entire period of late accretion were the same type of bodies and that they originated in the terrestrial planet region. Because a cataclysmic LHB would have, in part, resulted in compositionally distinct projectiles, we conclude that the LHB reflects the tail end of accretion. This implies that the giant planet orbital instability occurred during the main phase of planet formation. Last, because of their inner solar system origin, late-accreted bodies cannot be the primary source of Earth's water.

2.
Earth Planet Sci Lett ; 467: 157-166, 2017 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-30713346

RESUMO

The IAB iron meteorite complex consists of a main group (MG) and five chemical subgroups (sLL, sLM, sLH, sHL, and sHH). Here, mass-independent Mo and radiogenic 182W isotope compositions are reported for IAB complex meteorites to evaluate the genetics and chronology, respectively, of the MG and subgroups. Osmium isotopes are used to correct for cosmic ray exposure effects on isotopes of Mo andW. The MG and three subgroups (i.e., sLL, sLM, and sLH), characterized by low Au abundances, have the same Mo isotopic compositions within analytical uncertainty, consistent with a common genetic origin. These meteorites, together with winonaites, are the only cosmochemical materials yet identified with Mo isotopic compositions that are identical to Earth. The Mo isotopic compositions of two subgroups characterized by higher Au abundances (sHL and sHH) are identical to one another within uncertainty, but differ from the low Au subgroups, indicating derivation from genetically distinct materials. The MG has a 182W, post calcium-aluminum inclusion (CAI) formation model age of 3.4 ±0.7Ma. One of the low Au subgroups (sLM) is ~1.7 Ma younger, whereas the high Au subgroups are ~1.5-3 Ma older. The new Mo-W data, coupled with chemical data, indicate that the MG and the low Au subgroups formed in different impact-generated melts, some of which evidently formed on a chemically disparate, but genetically identical parent body. The high Au subgroups likely formed via core-formation processes on separate, internally-heated parent bodies from other IAB subgroups. The IAB complex meteorites fall on a linear trend defined by 94Mo/96Mo vs. 95Mo/96Mo, along with most other iron meteorite groups. Variation along this line was caused by mixing between at least two nebular components. One component was likely a pure s-process enriched nucleosynthetic carrier, and the other a homogenized nebular component. Sombrerete, currently classified as an sHL iron, has a Mo isotopic composition that is distinct from all IAB complex meteorites analyzed here. Along with group IVB iron meteorites and some ungrouped iron meteorites, it falls on a separate line from other meteorites which may reflect addition of an r-process-enriched component, and it should no longer be classified as a IAB iron.

3.
Int J Mass Spectrom ; 414: 80-86, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30713466

RESUMO

Here we describe a new analytical technique for the high-precision measurement of 182W/184W and 183W/184W using negative thermal ionization mass spectrometry (N-TIMS). We improve on the recently reported method of Trinquier et al. (2016), which described using Faraday cup collectors coupled with amplifiers utilizing 1013 Ω resistors to continuously monitor the 18O/16O of WO3 - and make per-integration oxide corrections. In our study, we report and utilize a newly measured oxygen mass fractionation line, as well as average 17O/16O and 18O/16O, which allow for more accurate per-integration oxide interference corrections. We also report a Faraday cup and amplifier configuration that allows 18O/16O to be continuously monitored for WO3 - and ReO3 -, both of which are ionized during analyses of W using Re ribbon. The long-term external precision of 182W/184W is 5.7 ppm and 3.7 ppm (2SD) when mass bias corrected using 186W/184W and 186W/183W, respectively. For 183W/184W mass bias is corrected using 186W/184W, yielding a long-term external precision of 6.6 ppm. An observed, correlated variation in 182W/184W and 183W/184W, when mass bias corrected using 186W/184W, is most likely the result of Faraday cup degradation over months-long intervals.

4.
Int J Mass Spectrom ; 407: 51-61, 2016 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-30842700

RESUMO

Procedures for the separation, purification, and high-precision analysis of mass-independent isotopic variations in molybdenum (Mo) using negative thermal ionization mass spectrometry are reported. Separation and purification of Mo from silicate and metal matrices are achieved using a two-stage anion exchange chromatographic procedure. Molybdenum is ionized as the MoO3 - species using a double filament assembly. The MoO3 - ion beams are collected using Faraday cup detectors equipped with a mixed array of amplifiers utilizing 1011 and 1012 Ω resistors, which allows for in situ measurement and correction of oxygen isobars. The long-term external reproducibility of 97Mo/96Mo, the most precisely measured Mo isotope ratio, is ±5.4 ppm (2SD), based on the repeated analyses of the Alfa Aesar Specpure ® Mo plasma standard and using 98Mo/96Mo for fractionation correction. The long-term external reproducibilities of 92Mo/96Mo, 94Mo/96Mo, 95Mo/96Mo, and 100Mo/96Mo are ±107, 37, 23, and 32 ppm (2SD), respectively. With this precision, smaller differences in Mo isotopic compositions can be resolved than have been previously possible.

5.
Geochim Cosmochim Acta ; 188: 261-283, 2016 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-30983598

RESUMO

Siderophile trace element abundances and the 187Re-187Os isotopic systematics of the metal phases of 58 IAB complex iron meteorites were determined in order to investigate formation processes and how meteorites within chemical subgroups may be related. Close adherence of 187Re-187Os isotopic data of most IAB iron meteorites to a primordial isochron indicates that the siderophile elements of most members of the complex remained closed to elemental disturbance soon after formation. Minor, presumably late-stage open-system behavior, however, is observed in some members of the sLM, sLH, sHL, and sHH subgroups. The new siderophile element abundance data are consistent with the findings of prior studies suggesting that the IAB subgroups cannot be related to one another by any known crystallization process. Equilibrium crystallization, coupled with crystal segregation, solid-liquid mixing, and subsequent fractional crystallization can account for the siderophile element variations among meteorites within the IAB main group (MG). The data for the sLM subgroup are consistent with equilibrium crystallization, combined with crystal segregation and mixing. By contrast, the limited fractionation of siderophile elements within the sLL subgroup is consistent with metal extraction from a chondritic source with little subsequent processing. The limited data for the other subgroups were insufficient to draw robust conclusions about crystallization processes involved in their formation. Collectively, multiple formational processes are represented in the IAB complex, and modeling results suggest that fractional crystallization within the MG may have been a more significant process than has been previously recognized.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...