Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomed Phys Eng Express ; 10(1)2023 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-37995364

RESUMO

The Dynamic Cardiac SPECT (DC-SPECT) system is being developed at the Massachusetts General Hospital, featuring a static cardio focus asymmetrical geometry enabling simultaneous high-resolution and high-sensitivity imaging. Among 14 design iterations of the DC-SPECT with varying number of detector heads, system sensitivity and resolution, the current version under development features 10 mm FWHM geometrical resolution (without resolution recovery) and 0.07% sensitivity at the center of the FOV, this is 1.5× resolution gain and 7× sensitivity gain compared to a conventional dual head gamma camera (0.01% sensitivity and 15-mm resolution). This work presents improvement in imaging resolution by implementing a spatially variant point spread function (SV-PSF) with list mode MLEM reconstruction. A resolution recovery method by PSF deconvolution is validated on list mode MLEM reconstruction for the DC-SPECT. A spatial invariant PSF is included as an additional test to show the influence of the PSF modelling accuracy on reconstructed image quality. We compare the MLEM reconstruction with and without PSF deconvolution; an analytic model is used for the calculation of system response, and the results are compared to the reconstruction with system modelling using Monte Carlo (MC) based methods. Results show that with PSF modelling applied, the quality of the reconstructed image is improved, and the DC-SPECT system can achieve a 4.5 mm central spatial resolution with average 795 counts/Mbq. Both the SV-PSF and the spatial-invariant PSF improve the image quality, and the reconstruction with SV-PSF generates line profiles closer to the ground truth. The results show substantial improvement over the GE Discovery 570c performance (7 mm spatial resolution with an average 460 counts/MBq, 5.8 mm resolution at the FOV center). The impact of PSF deconvolution is significant, improvement of the reconstructed image quality is evident in comparison to MC simulated system matrix with the same sampling size in the simulation.


Assuntos
Algoritmos , Processamento de Imagem Assistida por Computador , Processamento de Imagem Assistida por Computador/métodos , Imagens de Fantasmas , Tomografia Computadorizada de Emissão de Fóton Único/métodos , Tomografia por Emissão de Pósitrons/métodos
2.
J Med Imaging (Bellingham) ; 3(3): 035501, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27429999

RESUMO

Spectral computed tomography (SCT) generates better image quality than conventional computed tomography (CT). It has overcome several limitations for imaging atherosclerotic plaque. However, the literature evaluating the performance of SCT based on objective image assessment is very limited for the task of discriminating plaques. We developed a numerical-observer method and used it to assess performance on discrimination vulnerable-plaque features and compared the performance among multienergy CT (MECT), dual-energy CT (DECT), and conventional CT methods. Our numerical observer was designed to incorporate all spectral information and comprised two-processing stages. First, each energy-window domain was preprocessed by a set of localized channelized Hotelling observers (CHO). In this step, the spectral image in each energy bin was decorrelated using localized prewhitening and matched filtering with a set of Laguerre-Gaussian channel functions. Second, the series of the intermediate scores computed from all the CHOs were integrated by a Hotelling observer with an additional prewhitening and matched filter. The overall signal-to-noise ratio (SNR) and the area under the receiver operating characteristic curve (AUC) were obtained, yielding an overall discrimination performance metric. The performance of our new observer was evaluated for the particular binary classification task of differentiating between alternative plaque characterizations in carotid arteries. A clinically realistic model of signal variability was also included in our simulation of the discrimination tasks. The inclusion of signal variation is a key to applying the proposed observer method to spectral CT data. Hence, the task-based approaches based on the signal-known-exactly/background-known-exactly (SKE/BKE) framework and the clinical-relevant signal-known-statistically/background-known-exactly (SKS/BKE) framework were applied for analytical computation of figures of merit (FOM). Simulated data of a carotid-atherosclerosis patient were used to validate our methods. We used an extended cardiac-torso anthropomorphic digital phantom and three simulated plaque types (i.e., calcified plaque, fatty-mixed plaque, and iodine-mixed blood). The images were reconstructed using a standard filtered backprojection (FBP) algorithm for all the acquisition methods and were applied to perform two different discrimination tasks of: (1) calcified plaque versus fatty-mixed plaque and (2) calcified plaque versus iodine-mixed blood. MECT outperformed DECT and conventional CT systems for all cases of the SKE/BKE and SKS/BKE tasks (all [Formula: see text]). On average of signal variability, MECT yielded the SNR improvements over other acquisition methods in the range of 46.8% to 65.3% (all [Formula: see text]) for FBP-Ramp images and 53.2% to 67.7% (all [Formula: see text]) for FBP-Hanning images for both identification tasks. This proposed numerical observer combined with our signal variability framework is promising for assessing material characterization obtained through the additional energy-dependent attenuation information of SCT. These methods can be further extended to other clinical tasks such as kidney or urinary stone identification applications.

3.
IEEE Trans Med Imaging ; 34(3): 740-7, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25252276

RESUMO

Our goal is to validate a spectral computed tomography (CT) system design that uses a conventional X-ray source with multiple balanced K-edge filters. By performing a simultaneously synthetic reconstruction in multiple energy bins, we obtained a good agreement between measurements and model expectations for a reasonably complex phantom. We performed simulation and data acquisition on a phantom containing multiple rods of different materials using a NeuroLogica CT scanner. Five balanced K-edge filters including Molybdenum, Cerium, Dysprosium, Erbium, and Tungsten were used separately proximal to the X-ray tube. For each sinogram bin, measured filtered vector can be defined as a product of a transmission matrix, which is determined by the filters and is independent of the imaging object, and energy-binned intensity vector. The energy-binned sinograms were then obtained by inverting the transmission matrix followed by a multiplication of the filter measurement vector. For each energy bin defined by two consecutive K-edges, a synthesized energy-binned attenuation image was obtained using filtered back-projection reconstruction. The reconstructed attenuation coefficients for each rod obtained from the experiment was in good agreement with the corresponding simulated results. Furthermore, the reconstructed attenuation coefficients for a given energy bin, agreed with National Institute of Standards and Technology reference values when beam hardening within the energy bin is small. The proposed cost-effective system design using multiple balanced K-edge filters can be used to perform spectral CT imaging at clinically relevant flux rates using conventional detectors and integrating electronics.


Assuntos
Interpretação de Imagem Radiográfica Assistida por Computador/instrumentação , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Tomografia Computadorizada por Raios X/instrumentação , Tomografia Computadorizada por Raios X/métodos , Simulação por Computador , Filtração , Humanos , Imagens de Fantasmas , Espectrometria por Raios X , Tomografia Computadorizada por Raios X/normas
4.
IEEE Trans Med Imaging ; 34(3): 748-60, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25532170

RESUMO

Spectral computed tomography (CT) is a promising technique with the potential for improving lesion detection, tissue characterization, and material decomposition. In this paper, we are interested in kVp switching-based spectral CT that alternates distinct kVp X-ray transmissions during gantry rotation. This system can acquire multiple X-ray energy transmissions without additional radiation dose. However, only sparse views are generated for each spectral measurement; and the spectra themselves are limited in number. To address these limitations, we propose a penalized maximum likelihood method using spectral patch-based low-rank penalty, which exploits the self-similarity of patches that are collected at the same position in spectral images. The main advantage is that the relatively small number of materials within each patch allows us to employ the low-rank penalty that is less sensitive to intensity changes while preserving edge directions. In our optimization formulation, the cost function consists of the Poisson log-likelihood for X-ray transmission and the nonconvex patch-based low-rank penalty. Since the original cost function is difficult to minimize directly, we propose an optimization method using separable quadratic surrogate and concave convex procedure algorithms for the log-likelihood and penalty terms, which results in an alternating minimization that provides a computational advantage because each subproblem can be solved independently. We performed computer simulations and a real experiment using a kVp switching-based spectral CT with sparse-view measurements, and compared the proposed method with conventional algorithms. We confirmed that the proposed method improves spectral images both qualitatively and quantitatively. Furthermore, our GPU implementation significantly reduces the computational cost.


Assuntos
Tomografia Computadorizada por Raios X/instrumentação , Tomografia Computadorizada por Raios X/métodos , Algoritmos , Aterosclerose/diagnóstico , Simulação por Computador , Humanos , Imagens de Fantasmas , Distribuição de Poisson , Espectrometria por Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...