Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 295(12): 3906-3917, 2020 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-32054685

RESUMO

Transferrin receptor 2 (TFR2) is a transmembrane protein expressed mainly in hepatocytes and in developing erythroid cells and is an important focal point in systemic iron regulation. Loss of TFR2 function results in a rare form of the iron-overload disease hereditary hemochromatosis. Although TFR2 in the liver has been shown to be important for regulating iron homeostasis in the body, TFR2's function in erythroid progenitors remains controversial. In this report, we analyzed TFR2-deficient mice in the presence or absence of iron overload to distinguish between the effects caused by a high iron load and those caused by loss of TFR2 function. Analysis of bone marrow from TFR2-deficient mice revealed a reduction in the early burst-forming unit-erythroid and an expansion of late-stage erythroblasts that was independent of iron overload. Spleens of TFR2-deficient mice displayed an increase in colony-forming unit-erythroid progenitors and in all erythroblast populations regardless of iron overload. This expansion of the erythroid compartment coincided with increased erythroferrone (ERFE) expression and serum erythropoietin (EPO) levels. Rescue of hepatic TFR2 expression normalized hepcidin expression and the total cell count of the bone marrow and spleen, but it had no effect on erythroid progenitor frequency. On the basis of these results, we propose a model of TFR2's function in murine erythropoiesis, indicating that deficiency in this receptor is associated with increased erythroid development and expression of EPO and ERFE in extrahepatic tissues independent of TFR's role in the liver.


Assuntos
Eritropoese , Sobrecarga de Ferro/patologia , Receptores da Transferrina/genética , Animais , Células da Medula Óssea/citologia , Células da Medula Óssea/metabolismo , Citocinas/metabolismo , Eritropoetina/sangue , Hepcidinas/metabolismo , Sobrecarga de Ferro/metabolismo , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Musculares/metabolismo , Receptores da Transferrina/deficiência , Baço/patologia , Células-Tronco/citologia , Células-Tronco/metabolismo
2.
J Biol Chem ; 294(6): 2060-2073, 2019 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-30559294

RESUMO

Matriptase-2 (MT2) is a type-II transmembrane, trypsin-like serine protease that is predominantly expressed in the liver. It is a key suppressor for the expression of hepatic hepcidin, an iron-regulatory hormone that is induced via the bone morphogenetic protein signaling pathway. A current model predicts that MT2 suppresses hepcidin expression by cleaving multiple components of the induction pathway. MT2 is synthesized as a zymogen that undergoes autocleavage for activation and shedding. However, the biologically active form of MT2 and, importantly, the contributions of different MT2 domains to its function are largely unknown. Here we examined the activities of truncated MT2 that were generated by site-directed mutagenesis or Gibson assembly master mix, and found that the stem region of MT2 determines the specificity and efficacy for substrate cleavage. The transmembrane domain allowed MT2 activation after reaching the plasma membrane, and the cytoplasmic domain facilitated these processes. Further in vivo rescue studies indicated that the entire extracellular and transmembrane domains of MT2 are required to correct the low-hemoglobin, low-serum iron, and high-hepcidin status in MT2-/- mice. Unlike in cell lines, no autocleavage of MT2 was detected in vivo in the liver, implying that MT2 may also function independently of its proteolytic activity. In conjunction with our previous studies implicating the cytoplasmic domain as an intracellular iron sensor, these observations reveal the importance of each MT2 domain for MT2-mediated substrate cleavage and for its biological function.


Assuntos
Precursores Enzimáticos/metabolismo , Regulação da Expressão Gênica , Hepcidinas/biossíntese , Proteínas de Membrana/metabolismo , Proteólise , Serina Endopeptidases/metabolismo , Animais , Precursores Enzimáticos/genética , Células HEK293 , Hepcidinas/genética , Humanos , Proteínas de Membrana/genética , Camundongos , Camundongos Knockout , Serina Endopeptidases/genética
3.
PLoS One ; 13(4): e0194728, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29621273

RESUMO

Viral vectors are extensively purified for use in biomedical research, in order to separate biologically active virus particles and to eliminate production related impurities that are assumed to be detrimental to the host. For recombinant adeno-associated virus (rAAV) vectors this is typically accomplished using density gradient-based methods, which are tedious and require specialized ultracentrifugation equipment. In order to streamline the preparation of rAAV vectors for pilot and small animal studies, we recently devised a simple ultrafiltration approach that permits rapid virus concentration and partial removal of production-related impurities. Here we show that systemic administration of such rapidly prepared (RP) rAAV8 vectors in mice is safe and efficiently transduces the liver. Across a range of doses, delivery of RP rAAV8-CMV-eGFP vector induced enhanced green fluorescent protein (eGFP) expression in liver that was comparable to that obtained from a conventional iodixanol gradient-purified (IP) vector. Surprisingly, no liver inflammation or systemic cytokine induction was detected in RP rAAV injected animals, revealing that residual impurities in the viral vector preparation are not deleterious to the host. Together, these data demonstrate that partially purified rAAV vector can be safely and effectively administered in vivo. The speed and versatility of the RP method and lack of need for cumbersome density gradients or expensive ultracentrifuge equipment will enable more widespread use of RP prepared rAAV vectors, such as for pilot liver gene transfer studies.


Assuntos
Dependovirus/isolamento & purificação , Vetores Genéticos/administração & dosagem , Vetores Genéticos/isolamento & purificação , Fígado , Transdução Genética , Ultrafiltração , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais , Linhagem Celular , Dependovirus/genética , Dependovirus/imunologia , Expressão Gênica , Técnicas de Transferência de Genes , Genes Reporter , Terapia Genética , Vetores Genéticos/efeitos adversos , Vetores Genéticos/genética , Hepatócitos/metabolismo , Humanos , Fígado/metabolismo , Masculino , Camundongos , Modelos Animais , Transgenes , Ultracentrifugação , Ultrafiltração/métodos , Carga Viral , Replicação Viral
4.
J Biol Chem ; 292(44): 18354-18371, 2017 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-28924039

RESUMO

Systemic iron homeostasis is maintained by regulation of iron absorption in the duodenum, iron recycling from erythrocytes, and iron mobilization from the liver and is controlled by the hepatic hormone hepcidin. Hepcidin expression is induced via the bone morphogenetic protein (BMP) signaling pathway that preferentially uses two type I (ALK2 and ALK3) and two type II (ActRIIA and BMPR2) BMP receptors. Hemojuvelin (HJV), HFE, and transferrin receptor-2 (TfR2) facilitate this process presumably by forming a plasma membrane complex with BMP receptors. Matriptase-2 (MT2) is a protease and key suppressor of hepatic hepcidin expression and cleaves HJV. Previous studies have therefore suggested that MT2 exerts its inhibitory effect by inactivating HJV. Here, we report that MT2 suppresses hepcidin expression independently of HJV. In Hjv-/- mice, increased expression of exogenous MT2 in the liver significantly reduced hepcidin expression similarly as observed in wild-type mice. Exogenous MT2 could fully correct abnormally high hepcidin expression and iron deficiency in MT2-/- mice. In contrast to MT2, increased Hjv expression caused no significant changes in wild-type mice, suggesting that Hjv is not a limiting factor for hepcidin expression. Further studies revealed that MT2 cleaves ALK2, ALK3, ActRIIA, Bmpr2, Hfe, and, to a lesser extent, Hjv and Tfr2. MT2-mediated Tfr2 cleavage was also observed in HepG2 cells endogenously expressing MT2 and TfR2. Moreover, iron-loaded transferrin blocked MT2-mediated Tfr2 cleavage, providing further insights into the mechanism of Tfr2's regulation by transferrin. Together, these observations indicate that MT2 suppresses hepcidin expression by cleaving multiple components of the hepcidin induction pathway.


Assuntos
Regulação da Expressão Gênica , Hepatócitos/metabolismo , Hepcidinas/metabolismo , Proteínas de Membrana/metabolismo , Serina Endopeptidases/metabolismo , Animais , Feminino , Proteínas Ligadas por GPI , Técnicas de Transferência de Genes , Proteína da Hemocromatose/genética , Proteína da Hemocromatose/metabolismo , Células Hep G2 , Hepatócitos/enzimologia , Hepcidinas/agonistas , Hepcidinas/antagonistas & inibidores , Hepcidinas/genética , Humanos , Masculino , Proteínas de Membrana/genética , Camundongos da Linhagem 129 , Camundongos Knockout , Proteólise , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Serina Endopeptidases/genética , Especificidade por Substrato
5.
Nutrients ; 9(12)2017 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-29292794

RESUMO

Loss of p53's proper function accounts for over half of identified human cancers. We identified the metal transporter ZIP14 (Zinc-regulated transporter (ZRT) and Iron-regulated transporter (IRT)-like Protein 14) as a p53-regulated protein. ZIP14 protein levels were upregulated by lack of p53 and downregulated by increased p53 expression. This regulation did not fully depend on the changes in ZIP14's mRNA expression. Co-precipitation studies indicated that p53 interacts with ZIP14 and increases its ubiquitination and degradation. Moreover, knockdown of p53 resulted in higher non-transferrin-bound iron uptake, which was mediated by increased ZIP14 levels. Our study highlights a role for p53 in regulating nutrient metabolism and provides insight into how iron and possibly other metals such as zinc and manganese could be regulated in p53-inactivated tumor cells.


Assuntos
Proteínas de Transporte de Cátions/metabolismo , Fatores de Transcrição/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Transporte Biológico , Proteínas de Transporte de Cátions/genética , Inativação Gênica , Células HEK293 , Humanos , Ferro/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fatores de Transcrição/genética , Proteína Supressora de Tumor p53/genética
6.
J Invest Dermatol ; 137(2): 359-366, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27720760

RESUMO

Altered innate immunity is a feature of certain skin inflammatory diseases such as psoriasis and atopic dermatitis (AD). In this study, we provide evidence that deficiency in Trim32 (a tripartite motif [TRIM] protein with innate antiviral activity) contributes to a T helper type 2 biased response and predisposes to features of AD in mice. On treatment with the toll-like receptor 7 agonist imquimod (IMQ), Trim32 knockout mice displayed compromised psoriasiform phenotypes and defective T helper type 17 response. Instead, IMQ treatment of Trim32 knockout mice induced AD-like phenotypes with enhanced skin infiltration of eosinophils and mast cells, elevation of T helper type 2 cytokines/chemokines expression, and reduced expression of filaggrin protein expression. Furthermore, although the induction of phosphorylated Stat3 and RelA was compromised after IMQ treatment in the knockout mice, phosphorylated Stat6 was elevated. CC chemokine ligand 20 induction by tumor necrosis factor-α and IL-17A was reduced in Trim32-deficient keratinocytes, whereas CC chemokine ligand 5 induction by tumor necrosis factor-α and IL-4 was enhanced. In addition, Trim32 protein levels were elevated in mice treated with IMQ. Unlike Trim32 overexpression in psoriasis, TRIM32 levels were low in patients with AD. Based on Trim32 induction by IMQ, the lower levels of TRIM32 in AD skin compared with healthy control and psoriatic skin suggest a defective TRIM32 pathway in AD pathogenesis.


Assuntos
Dermatite Atópica/etiologia , Células Th2/imunologia , Ubiquitina-Proteína Ligases/deficiência , Aminoquinolinas/farmacologia , Animais , Quimiocina CCL5/análise , Dermatite Atópica/imunologia , Proteínas Filagrinas , Imiquimode , Proteínas de Filamentos Intermediários/análise , Mastócitos/fisiologia , Glicoproteínas de Membrana/agonistas , Glicoproteínas de Membrana/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Fator de Transcrição STAT6/metabolismo , Células Th17/imunologia , Receptor 7 Toll-Like/agonistas , Receptor 7 Toll-Like/fisiologia , Ubiquitina-Proteína Ligases/fisiologia
7.
Cancer Biol Ther ; 14(2): 95-9, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23192268

RESUMO

Current therapies for Renal Cell Carcinoma favor vascular endothelial growth factor receptor (VEGF-R) tyrosine kinase (TK) inhibitors (TKIs). In theory, these are most applicable in tumors that have lost VHL-with subsequent stabilization of HIF and upregulation of VEGF. A subset of patients harbor primary-refractory disease, as in this case, where there was no evidence for loss of VHL or chromosome 3p. We evaluated molecular targeted agents in viable tumor cells cultured from a patient's clear cell renal cell carcinoma (RCC). Of 66 agents, only dasatinib, an inhibitor of Src tyrosine kinase, strongly reduced viability of the patient's cultured kidney tumor cells. Immunostaining of the original primary tumor revealed strong positivity for VHL and Src protein expression. Functional evaluation of a patient's tumor cells appears feasible in the setting of RCC.


Assuntos
Antineoplásicos/farmacologia , Carcinoma de Células Renais/metabolismo , Neoplasias Renais/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Concentração Inibidora 50 , Masculino , Pessoa de Meia-Idade , Proteína Supressora de Tumor Von Hippel-Lindau/antagonistas & inibidores , Quinases da Família src/antagonistas & inibidores
8.
PLoS One ; 7(5): e37636, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22649547

RESUMO

Negative regulation of the NF-κB transcription factor is essential for tissue homeostasis in response to stress and inflammation. NF-κB activity is regulated by a variety of biochemical mechanisms including phosphorylation, acetylation, and ubiquitination. In this study, we provide the first experimental evidence that NF-κB is regulated by SUMOylation, where the RelA subunit of NF-κB is SUMOylated by PIAS3, a member of the PIAS (protein inhibitor of activated STAT) protein family with E3 SUMO ligase activity. PIAS3-mediated NF-κB repression was compromised by either RelA mutant resistant to SUMOylation or PIAS3 mutant defective in SUMOylation. PIAS3-mediated SUMOylation of endogenous RelA was induced by NF-κB activation thus forming a negative regulatory loop. The SUMOylation of endogenous RelA was enhanced in IκBα null as compared with wild type fibroblasts. The RelA SUMOylation was induced by TNFα but not leptomycin B mediated RelA nuclear translocation. Furthermore, RelA mutants defective in DNA binding were not SUMOylated by PIAS3, suggesting that RelA DNA binding is a signal for PIAS3-mediated SUMOylation. These results support a novel negative feedback mechanism for NF-κB regulation by PIAS3-mediated RelA SUMOylation.


Assuntos
Retroalimentação Fisiológica/fisiologia , Ligases/metabolismo , NF-kappa B/antagonistas & inibidores , Proteínas Inibidoras de STAT Ativados/metabolismo , Sumoilação/efeitos dos fármacos , Transporte Ativo do Núcleo Celular , Clonagem Molecular , Ácidos Graxos Insaturados/metabolismo , Retroalimentação Fisiológica/efeitos dos fármacos , Fibroblastos , Células HEK293 , Humanos , Immunoblotting , Lentivirus , Ligases/genética , Luciferases , Plasmídeos/genética , Proteínas Inibidoras de STAT Ativados/farmacologia , Fator de Necrose Tumoral alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...