Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev E ; 102(1-1): 012126, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32794983

RESUMO

Transient regimes, often difficult to characterize, can be fundamental in establishing final steady states features of reaction-diffusion phenomena. This is particularly true in ecological problems. Here, through both numerical simulations and an analytic approximation, we analyze the transient of a nonequilibrium superdiffusive random search when the targets are created at a certain rate and annihilated upon encounters (a key dynamics, e.g., in biological foraging). The steady state is achieved when the number of targets stabilizes to a constant value. Our results unveil how key features of the steady state are closely associated to the particularities of the initial evolution. The searching efficiency variation in time is also obtained. It presents a rather surprising universal behavior at the asymptotic limit. These analyses shed some light into the general relevance of transients in reaction-diffusion systems.

2.
J Theor Biol ; 412: 113-122, 2017 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-27984080

RESUMO

We address evolutionary dynamics and consider under which conditions the ecosystem interaction network allows punctuated equilibrium (i.e., alternation between hectic and quasi-stable phases). We focus on the links connecting various species and on the strength and sign of those links. For this study we consider the Tangled Nature model, which allows considerable flexibility and plasticity in the analysis of interspecies interactions. We find that it is necessary to have a proper balance of connectivity and interaction intensities so as to establish the kind of mutual cooperation and competition found in nature. It suggests evolutionary punctuated equilibrium as an emergent process, thus displaying features of complex systems. To explicitly demonstrate this fact we consider an extended form of thermodynamics, defining (for the present context) relevant out-of-equilibrium "collective" functions. We then show how to characterize the punctuated equilibrium through entropy-like and free energy-like quantities. Finally, from a close analogy to thermodynamic systems, we propose a protocol similar to simulated annealing. It is based on controlling the species' rate of mutation during the hectic periods, in this way enhancing the exploration of the genome space (similar to the known behavior of bacteria in stressful environments). This allows the system to more rapidly converge to long-duration quasi-stable phases.


Assuntos
Bactérias/crescimento & desenvolvimento , Ecossistema , Entropia , Modelos Biológicos , Bactérias/genética
3.
Artigo em Inglês | MEDLINE | ID: mdl-26066131

RESUMO

The random search problem is a challenging and interdisciplinary topic of research in statistical physics. Realistic searches usually take place in nonuniform heterogeneous distributions of targets, e.g., patchy environments and fragmented habitats in ecological systems. Here we present a comprehensive numerical study of search efficiency in arbitrarily fragmented landscapes with unlimited visits to targets that can only be found within patches. We assume a random walker selecting uniformly distributed turning angles and step lengths from an inverse power-law tailed distribution with exponent µ. Our main finding is that for a large class of fragmented environments the optimal strategy corresponds approximately to the same value µ(opt)≈2. Moreover, this exponent is indistinguishable from the well-known exact optimal value µ(opt)=2 for the low-density limit of homogeneously distributed revisitable targets. Surprisingly, the best search strategies do not depend (or depend only weakly) on the specific details of the fragmentation. Finally, we discuss the mechanisms behind this observed robustness and comment on the relevance of our results to both the random search theory in general, as well as specifically to the foraging problem in the biological context.

4.
Artigo em Inglês | MEDLINE | ID: mdl-26764660

RESUMO

Random searches often take place in fragmented landscapes. Also, in many instances like animal foraging, significant benefits to the searcher arise from visits to a large diversity of patches with a well-balanced distribution of targets found. Up to date, such aspects have been widely ignored in the usual single-objective analysis of search efficiency, in which one seeks to maximize just the number of targets found per distance traversed. Here we address the problem of determining the best strategies for the random search when these multiple-objective factors play a key role in the process. We consider a figure of merit (efficiency function), which properly "scores" the mentioned tasks. By considering random walk searchers with a power-law asymptotic Lévy distribution of step lengths, p(ℓ)∼ℓ(-µ), with 1<µ≤3, we show that the standard optimal strategy with µ(opt)≈2 no longer holds universally. Instead, optimal searches with enhanced superdiffusivity emerge, including values as low as µ(opt)≈1.3 (i.e., tending to the ballistic limit). For the general theory of random search optimization, our findings emphasize the necessity to correctly characterize the multitude of aims in any concrete metric to compare among possible candidates to efficient strategies. In the context of animal foraging, our results might explain some empirical data pointing to stronger superdiffusion (µ<2) in the search behavior of different animal species, conceivably associated to multiple goals to be achieved in fragmented landscapes.


Assuntos
Modelos Teóricos , Processos Estocásticos
5.
J R Soc Interface ; 11(91): 20130887, 2014 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-24258156

RESUMO

Several studies have reported that fragmentation (e.g. of anthropogenic origin) of habitats often leads to a decrease in the number of species in the region. An important mechanism causing this adverse ecological impact is the change in the encounter rates (i.e. the rates at which individuals meet other organisms of the same or different species). Yet, how fragmentation can change encounter rates is poorly understood. To gain insight into the problem, here we ask how landscape fragmentation affects encounter rates when all other relevant variables remain fixed. We present strong numerical evidence that fragmentation decreases search efficiencies thus encounter rates. What is surprising is that it falls even when the global average densities of interacting organisms are held constant. In other words, fragmentation per se can reduce encounter rates. As encounter rates are fundamental for biological interactions, it can explain part of the observed diminishing in animal biodiversity. Neglecting this effect may underestimate the negative outcomes of fragmentation. Partial deforestation and roads that cut through forests, for instance, might be responsible for far greater damage than thought. Preservation policies should take into account this previously overlooked scientific fact.


Assuntos
Biodiversidade , Ecossistema , Dinâmica Populacional , Animais , Canadá , Conservação dos Recursos Naturais , Ecologia , Meio Ambiente , Agricultura Florestal , Modelos Biológicos , Modelos Estatísticos , Densidade Demográfica , Estrigiformes , Árvores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...