Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Clin Hemorheol Microcirc ; 70(2): 155-172, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29710681

RESUMO

BACKGROUND: Research on hemorheology is driven in part by its significance in blood diseases and the possible use of hemorheology as a diagnostic tool. However, existing data on blood rheology are limited largely to measurements of steady shear behavior often with varying measurement protocols and insufficient characterization of the physiology. OBJECTIVE: The effects of ex vivo aging and environmental conditions on blood viscosity are investigated to improve standards for hemorheology measurements. METHODS: Measurements on the viscosity of blood from nine healthy donors are obtained and the physiological state of the blood determined. Steady and transient shear measurements are reported as a function of time from withdrawal. The effect of transportation temperature is also assessed. RESULTS: Blood transported at 4 °C may exhibit anomalous viscosity variations for short to intermediate times, as opposed to blood transported at room temperature. A time of approximately 3.0 hours was identified as the maximum time after the initial test that accurate rheological tests can be conducted on blood samples. CONCLUSIONS: Measurement protocol and time limit guidelines are established for conducting accurate rheological measurements on blood.


Assuntos
Viscosidade Sanguínea/fisiologia , Hemorreologia/genética , Envelhecimento , Humanos , Temperatura
2.
J Am Heart Assoc ; 6(5)2017 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-28522678

RESUMO

BACKGROUND: Cigarette smoking plays a major role in cardiovascular diseases. The acute effects of cigarette smoking produce central nervous system-mediated activation of the sympathetic nervous system. The overactive sympathetic nervous system stimulates the secretion of serotonin (5-HT) and catecholamine into blood at supraphysiological levels. The correlation between these pathological conditions induced by smoking and the increased risk of thrombosis has not been thoroughly investigated. The goal of our study was to explore cigarette smoking-associated changes in platelet biology mediated by elevated 5-HT and catecholamine levels in blood plasma. METHODS AND RESULTS: Using blood samples collected from healthy nonsmokers and smokers (15 minutes after smoking), we determined that cigarette smoking increased the plasma 5-HT/catecholamine concentration by several fold and the percent aggregation of platelets 2-fold. Liquid chromatography-tandem mass spectrometry analysis of proteins eluted from platelet plasma membranes of smokers and nonsmokers demonstrated that GTPase-activating proteins and proteins participating in the actin cytoskeletal network were differentially and significantly elevated in smokers' platelet membranes compared with those of nonsmokers. Interestingly, Matrix-assisted laser desorption/ionization-mass spectrometry analyses of the glycans eluted from platelet plasma membranes of the smokers demonstrated that the level and structures of glycans are different from the nonsmokers' platelet surface glycans. Pharmacological blockade of 5-HT or catecholamine receptors counteracted the 5-HT/catecholamine-mediated aggregation and altered the level and composition of glycan on platelet surfaces. CONCLUSIONS: Based on our findings, we propose that smoking-associated 5-HT/catecholamine signaling accelerates the trafficking dynamics of platelets, and this remodels the surface proteins and glycans and predisposes platelets to hyperactive levels. Smokers' platelets also had correspondingly higher resting concentrations of intracellular calcium and transglutaminase activity. These findings suggest a link among smoking, platelet 5-HT, catecholamine signaling, and their downstream effectors-including phospholipase C and inositol-1,4,5-triphosphate pathways-resulting in an increased tonic level of platelet activation in smokers.


Assuntos
Plaquetas/metabolismo , Membrana Celular/metabolismo , Epinefrina/sangue , Ativação Plaquetária , Serotonina/sangue , Transdução de Sinais , Fumar/sangue , Antagonistas Adrenérgicos beta/farmacologia , Adulto , Plaquetas/efeitos dos fármacos , Cálcio/sangue , Estudos de Casos e Controles , Membrana Celular/efeitos dos fármacos , Cromatografia Líquida de Alta Pressão , Humanos , Masculino , Ativação Plaquetária/efeitos dos fármacos , Agregação Plaquetária , Inibidores da Agregação Plaquetária/farmacologia , Polissacarídeos/sangue , Transporte Proteico , Antagonistas do Receptor 5-HT2 de Serotonina/farmacologia , Transdução de Sinais/efeitos dos fármacos , Fumar/efeitos adversos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Espectrometria de Massas em Tandem , Fatores de Tempo , Transglutaminases/sangue , Regulação para Cima
3.
Blood ; 124(16): 2475-6, 2014 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-25323685

RESUMO

In this issue of Blood, Darbousset et al define opposing roles for adenosine triphosphate (ATP) and adenosine in regulating polymorphonuclear neutrophil (PMN) activation, fibrin formation, and thrombus growth following vascular injury.


Assuntos
Plaquetas/metabolismo , Neutrófilos/metabolismo , Receptores Purinérgicos P2X1/genética , Trombose/genética , Animais , Humanos
4.
Blood ; 124(13): 2094-103, 2014 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-24948658

RESUMO

In vivo visualization of thrombopoiesis suggests an important role for shear flow in platelet biogenesis. In vitro, shear stress was shown to accelerate proplatelet formation from mature megakaryocytes (Mks). Yet, the role of biomechanical forces on Mk biology and platelet biogenesis remains largely unexplored. In this study, we investigated the impact of shear stress on Mk maturation and formation of platelet-like particles (PLPs), pro/preplatelets (PPTs), and Mk microparticles (MkMPs), and furthermore, we explored a physiological role for MkMPs. We found that shear accelerated DNA synthesis of immature Mks in an exposure time- and shear stress level-dependent manner. Both phosphatidylserine exposure and caspase-3 activation were enhanced by shear stress. Exposure to physiological shear dramatically increased generation of PLPs/PPTs and MkMPs by up to 10.8 and 47-fold, respectively. Caspase-3 inhibition reduced shear-induced PLP/PPT and MkMP formation. PLPs generated under shear flow displayed improved functionality as assessed by CD62P exposure and fibrinogen binding. Significantly, coculture of MkMPs with hematopoietic stem and progenitor cells promoted hematopoietic stem and progenitor cell differentiation to mature Mks synthesizing α- and dense-granules, and forming PPTs without exogenous thrombopoietin, thus identifying a novel and unexplored potential physiological role for MkMPs.


Assuntos
Diferenciação Celular , Micropartículas Derivadas de Células/metabolismo , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Megacariócitos/citologia , Megacariócitos/metabolismo , Resistência ao Cisalhamento , Estresse Fisiológico , Trombopoese/fisiologia , Antígenos CD34/metabolismo , Caspase 3/metabolismo , Micropartículas Derivadas de Células/ultraestrutura , Replicação do DNA , Ativação Enzimática , Humanos , Poliploidia
5.
Mol Pharmacol ; 86(1): 1-11, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24723492

RESUMO

It is now well accepted that protease activated receptor (PAR) 1 and PAR4 have differential roles in platelet activation. PAR4, a low-affinity thrombin receptor in human platelets, participates in sustained platelet activation in a P2Y12-dependent manner; however, the mechanisms are not defined. Our previous studies demonstrated that thrombin induces the association of PAR4 with P2Y12, together with arrestin recruitment to the complex. Here we show that PAR4 and P2Y12 directly interact to coregulate Akt signaling after PAR4 activation. We observed direct and specific interaction of P2Y12 with PAR4 but not PAR1 by bioluminescent resonance energy transfer when the receptors were coexpressed in human embryonic kidney 293T cells. PAR4-P2Y12 dimerization was promoted by PAR4-AP and inhibited by P2Y12 antagonist. By using sequence comparison of the transmembrane domains of PAR1 and PAR4, we designed a mutant form of PAR4, "PAR4SFT," by replacing LGL194-196 at the base of transmembrane domain 4 with the corresponding aligned PAR1 residues SFT 220-222. PAR4SFT supported only 8.74% of PAR4-P2Y12 interaction, abolishing P2Y12-dependent arrestin recruitment to PAR4 and Akt activation. Nonetheless, PAR4SFT still supported homodimerization with PAR4. PAR4SFT failed to induce a calcium flux when expressed independently; however, coexpression of increasing concentrations of PAR4SFT, together with PAR4 potentiated PAR4-mediated calcium flux, suggested that PAR4 act as homodimers to signal to Gq-coupled calcium responses. In conclusion, PAR4 LGL (194-196) governs agonist-dependent association of PAR4 with P2Y12 and contributes to Gq-coupled calcium responses. PAR4-P2Y12 association supports arrestin-mediated sustained signaling to Akt. Hence, PAR4-P2Y12 dimerization is likely to be important for the PAR4-P2Y12 dependent stabilization of platelet thrombi.


Assuntos
Arrestinas/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores Purinérgicos P2Y12/metabolismo , Receptores de Trombina/metabolismo , Cálcio/metabolismo , Células Cultivadas , Células HEK293 , Humanos , Proteínas de Membrana/metabolismo , Ativação Plaquetária/fisiologia , Estrutura Terciária de Proteína , Transdução de Sinais/fisiologia , Trombina/metabolismo
6.
Exp Hematol ; 40(2): 131-42.e4, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22024107

RESUMO

The pathobiological role of p53 has been widely studied, however, its role in normophysiology is relatively unexplored. We previously showed that p53 knock-down increased ploidy in megakaryocytic cultures. This study aims to examine the effect of p53 loss on in vivo megakaryopoiesis, platelet production, and function, and to investigate the basis for greater ploidy in p53(-/-) megakaryocytic cultures. Here, we used flow cytometry to analyze ploidy, DNA synthesis, and apoptosis in murine cultured and bone marrow megakaryocytes following thrombopoietin administration and to analyze fibrinogen binding to platelets in vitro. Culture of p53(-/-) marrow cells for 6 days with thrombopoietin gave rise to 1.7-fold more megakaryocytes, 26.1% ± 3.6% of which reached ploidy classes ≥64 N compared to 8.2% ± 0.9% of p53(+/+) megakaryocytes. This was due to 30% greater DNA synthesis in p53(-/-) megakaryocytes and 31% greater apoptosis in p53(+/+) megakaryocytes by day 4 of culture. Although the bone marrow and spleen steady-state megakaryocytic content and ploidy were similar in p53(+/+) and p53(-/-) mice, thrombopoietin administration resulted in increased megakaryocytic polyploidization in p53(-/-) mice. Although their platelet counts were normal, p53(-/-) mice exhibited significantly longer bleeding times and p53(-/-) platelets were less sensitive than p53(+/+) platelets to agonist-induced fibrinogen binding and P-selectin secretion. In summary, our in vivo and ex vivo studies indicate that p53 loss leads to increased polyploidization during megakaryopoiesis. Our findings also suggest for the first time a direct link between p53 loss and the development of fully functional platelets resulting in hemostatic deficiencies.


Assuntos
Plaquetas/fisiologia , Trombopoese/fisiologia , Proteína Supressora de Tumor p53/fisiologia , Animais , Cruzamento , Tamanho Celular , Hemostasia , Masculino , Camundongos , Selectina-P/metabolismo , Receptores Ativados por Proteinase/agonistas
7.
Blood ; 118(2): 220-2, 2011 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-21757628
8.
Blood ; 117(3): 1005-13, 2011 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-20971951

RESUMO

Two major pathways contribute to Ras-proximate-1-mediated integrin activation in stimulated platelets. Calcium and diacyglycerol-regulated guanine nucleotide exchange factor I (CalDAG-GEFI, RasGRP2) mediates the rapid but reversible activation of integrin αIIbß3, while the adenosine diphosphate receptor P2Y12, the target for antiplatelet drugs like clopidogrel, facilitates delayed but sustained integrin activation. To establish CalDAG-GEFI as a target for antiplatelet therapy, we compared how each pathway contributes to thrombosis and hemostasis in mice. Ex vivo, thrombus formation at arterial or venous shear rates was markedly reduced in CalDAG-GEFI(-/-) blood, even in the presence of exogenous adenosine diphosphate and thromboxane A(2). In vivo, thrombosis was virtually abolished in arterioles and arteries of CalDAG-GEFI(-/-) mice, while small, hemostatically active thrombi formed in venules. Specific deletion of the C1-like domain of CalDAG-GEFI in circulating platelets also led to protection from thrombus formation at arterial flow conditions, while it only marginally increased blood loss in mice. In comparison, thrombi in the micro- and macrovasculature of clopidogrel-treated wild-type mice grew rapidly and frequently embolized but were hemostatically inactive. Together, these data suggest that inhibition of the catalytic or the C1 regulatory domain in CalDAG-GEFI will provide strong protection from athero-thrombotic complications while maintaining a better safety profile than P2Y12 inhibitors like clopidogrel.


Assuntos
Fatores de Troca do Nucleotídeo Guanina/metabolismo , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/metabolismo , Receptores Purinérgicos P2Y12/metabolismo , Trombose/metabolismo , Animais , Plaquetas/efeitos dos fármacos , Plaquetas/metabolismo , Clopidogrel , Feminino , Citometria de Fluxo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Fatores de Troca do Nucleotídeo Guanina/sangue , Fatores de Troca do Nucleotídeo Guanina/genética , Hemostasia , Cinética , Masculino , Mesentério/irrigação sanguínea , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Músculo Esquelético/irrigação sanguínea , Inibidores da Agregação Plaquetária/uso terapêutico , Transdução de Sinais/efeitos dos fármacos , Trombose/tratamento farmacológico , Trombose/genética , Ticlopidina/análogos & derivados , Ticlopidina/uso terapêutico
9.
J Biol Chem ; 286(5): 3805-14, 2011 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-21106537

RESUMO

Arrestins can facilitate desensitization or signaling by G protein-coupled receptors (GPCR) in many cells, but their roles in platelets remain uncharacterized. Because of recent reports that arrestins can serve as scaffolds to recruit phosphatidylinositol-3 kinases (PI3K)s to GPCRs, we sought to determine whether arrestins regulate PI3K-dependent Akt signaling in platelets, with consequences for thrombosis. Co-immunoprecipitation experiments demonstrate that arrestin-2 associates with p85 PI3Kα/ß subunits in thrombin-stimulated platelets, but not resting cells. The association is inhibited by inhibitors of P2Y12 and Src family kinases (SFKs). The function of arrestin-2 in platelets is agonist-specific, as PAR4-dependent Akt phosphorylation and fibrinogen binding were reduced in arrestin-2 knock-out platelets compared with WT controls, but ADP-stimulated signaling to Akt and fibrinogen binding were unaffected. ADP receptors regulate arrestin recruitment to PAR4, because co-immunoprecipitates of arrestin-2 with PAR4 are disrupted by inhibitors of P2Y1 or P2Y12. P2Y1 may regulate arrestin-2 recruitment to PAR4 through protein kinase C (PKC) activation, whereas P2Y12 directly interacts with PAR4 and therefore, may help to recruit arrestin-2 to PAR4. Finally, arrestin2(-/-) mice are less sensitive to ferric chloride-induced thrombosis than WT mice, suggesting that arrestin-2 can regulate thrombus formation in vivo. In conclusion, arrestin-2 regulates PAR4-dependent signaling pathways, but not responses to ADP alone, and contributes to thrombus formation in vivo.


Assuntos
Arrestinas/fisiologia , Plaquetas/metabolismo , Receptores Ativados por Proteinase/metabolismo , Receptores Purinérgicos P2/metabolismo , Transdução de Sinais , Animais , Classe Ia de Fosfatidilinositol 3-Quinase/metabolismo , Camundongos , Camundongos Knockout , Transporte Proteico , Trombose/etiologia , beta-Arrestinas
10.
Expert Rev Hematol ; 3(1): 81-91, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20352060

RESUMO

Akt is a Ser-Thr kinase with pleiotropic effects on cell survival, growth and metabolism. Recent evidence from gene-deletion studies in mice, and analysis of human platelets treated with Akt inhibitors, suggest that Akt regulates platelet activation, with potential consequences for thrombosis. Akt activation is regulated by the level of phosphoinositide 3-phosphates, and proteins that regulate concentrations of this lipid also regulate Akt activation and platelet function. Although the effectors through which Akt contributes to platelet activation are not definitively known, several candidates are discussed, including endothelial nitric oxide synthase, glycogen synthase kinase 3ß, phosphodiesterase 3A and the integrin ß(3) tail. Selective inhibitors of Akt isoforms or of proteins that contribute to its activation, such as individual PI3K isoforms, may make attractive targets for antithrombotic therapy. This review summarizes the current literature describing Akt activity and its regulation in platelets, including speculation regarding the future of Akt or its regulatory pathways as targets for the development of antithrombotic therapies.

11.
Blood ; 113(14): 3133-4, 2009 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-19342496
12.
Arterioscler Thromb Vasc Biol ; 29(4): 449-57, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19023091

RESUMO

Platelet G protein-coupled receptors (GPCRs) initiate and reinforce platelet activation and thrombus formation. The clinical utility of antagonists of the P2Y(12) receptor for ADP suggests that other GPCRs and their intracellular signaling pathways may represent viable targets for novel antiplatelet agents. For example, thrombin stimulation of platelets is mediated by 2 protease-activated receptors (PARs), PAR-1 and PAR-4. Signaling downstream of PAR-1 or PAR-4 activates phospholipase C and protein kinase C and causes autoamplification by production of thromboxane A(2), release of ADP, and generation of more thrombin. In addition to ADP receptors, thrombin and thromboxane A(2) receptors and their downstream effectors-including phosphoinositol-3 kinase, Rap1b, talin, and kindlin-are promising targets for new antiplatelet agents. The mechanistic rationale and available clinical data for drugs targeting disruption of these signaling pathways are discussed. The identification and development of new agents directed against specific platelet signaling pathways may offer an advantage in preventing thrombotic events while minimizing bleeding risk.


Assuntos
Plaquetas/efeitos dos fármacos , Inibidores da Agregação Plaquetária/farmacologia , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Difosfato de Adenosina/metabolismo , Animais , Plaquetas/enzimologia , Plaquetas/metabolismo , Desenho de Fármacos , Hemorragia/induzido quimicamente , Humanos , Inibidores da Agregação Plaquetária/efeitos adversos , Inibidores da Agregação Plaquetária/química , Antagonistas do Receptor Purinérgico P2 , Receptor PAR-1/antagonistas & inibidores , Receptores Acoplados a Proteínas G/sangue , Receptores Purinérgicos P2Y1 , Receptores Purinérgicos P2Y12 , Receptores de Trombina/antagonistas & inibidores , Receptores de Tromboxanos/antagonistas & inibidores , Trombina/metabolismo , Tromboxanos/metabolismo
13.
Blood ; 111(7): 3522-30, 2008 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-18218855

RESUMO

Glycogen synthase kinase (GSK)3beta is a ser-thr kinase that is phosphorylated by the kinase Akt. Although Akt has been shown to regulate platelet function and arterial thrombosis, its effectors in platelets remain unknown. We show here that agonist-dependent phosphorylation of GSK3beta in platelets is Akt dependent. To determine whether GSK3beta regulates platelet function, platelets from mice lacking a single allele of GSK3beta were compared with those of wild-type (WT) controls. GSK3beta+/- platelets demonstrated enhanced agonist-dependent aggregation, dense granule secretion, and fibrinogen binding, compared with WT platelets. Treatment of human platelets with GSK3 inhibitors renders them more sensitive to agonist-induced aggregation, suggesting that GSK3 suppresses platelet function in vitro. Finally, the effect of GSK3beta on platelet function in vivo was evaluated using 2 thrombosis models in mice. In the first, 80% of GSK3beta+/- mice (n=10) formed stable occlusive thrombi after ferric chloride carotid artery injury, whereas the majority of wild-type mice (67%) formed no thrombi (n=15). In a disseminated thrombosis model, deletion of a single allele of GSK3beta in mice conferred enhanced sensitivity to thrombotic insult. Taken together, these results suggest that GSK3beta acts as a negative regulator of platelet function in vitro and in vivo.


Assuntos
Plaquetas/enzimologia , Quinase 3 da Glicogênio Sintase/metabolismo , Agregação Plaquetária , Trombose/etnologia , Animais , Plaquetas/patologia , Lesões das Artérias Carótidas , Cloretos , Modelos Animais de Doenças , Inibidores Enzimáticos/farmacologia , Compostos Férricos/toxicidade , Quinase 3 da Glicogênio Sintase/antagonistas & inibidores , Quinase 3 da Glicogênio Sintase/genética , Glicogênio Sintase Quinase 3 beta , Humanos , Camundongos , Camundongos Knockout , Noxas/toxicidade , Fosforilação/efeitos dos fármacos , Agregação Plaquetária/efeitos dos fármacos , Agregação Plaquetária/genética , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Trombose/induzido quimicamente , Trombose/genética , Trombose/patologia
14.
Blood ; 111(7): 3458-67, 2008 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-18094327

RESUMO

Serglycin (SG), the hematopoietic cell secretory granule proteoglycan, is crucial for storage of specific secretory proteins in mast cells, neutrophils, and cytotoxic T lymphocytes. We addressed the role of SG in platelets using SG-/- mice. Wild-type (WT) but not SG-/- platelets contained chondroitin sulfate proteoglycans. Electron microscopy revealed normal alpha-granule structure in SG-/- platelets. However, SG-/- platelets and megakaryocytes contained unusual scroll-like membranous inclusions, and SG-/- megakaryocytes showed extensive emperipolesis of neutrophils. SG-/- platelets had reduced ability to aggregate in response to low concentrations of collagen or PAR4 thrombin receptor agonist AYPGKF, and reduced fibrinogen binding after AYPGKF, but aggregated normally to ADP. 3H-serotonin and ATP secretion were greatly reduced in SG-/- platelets. The alpha-granule proteins platelet factor 4, beta-thromboglobulin, and platelet-derived growth factor were profoundly reduced in SG-/- platelets. Exposure of P-selectin and alphaIIb after thrombin treatment was similar in WT and SG-/- platelets. SG-/- mice exhibited reduced carotid artery thrombus formation after exposure to FeCl3. This study demonstrates that SG is crucial for platelet function and thrombus formation. We propose that SG-/- platelet function deficiencies are related to inadequate packaging and secretion of selected alpha-granule proteins and reduced secretion of dense granule contents critical for platelet activation.


Assuntos
Plaquetas/metabolismo , Megacariócitos/metabolismo , Agregação Plaquetária , Proteoglicanas/metabolismo , Vesículas Secretórias/metabolismo , Trombose/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Plaquetas/ultraestrutura , Cloretos , Compostos Férricos/farmacologia , Fibrinogênio/genética , Fibrinogênio/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Hematopoéticas/patologia , Mastócitos/metabolismo , Mastócitos/patologia , Megacariócitos/ultraestrutura , Camundongos , Camundongos Knockout , Neutrófilos/metabolismo , Neutrófilos/patologia , Noxas/farmacologia , Oligopeptídeos/farmacologia , Selectina-P/genética , Selectina-P/metabolismo , Agregação Plaquetária/efeitos dos fármacos , Agregação Plaquetária/genética , Fator Plaquetário 4/genética , Fator Plaquetário 4/metabolismo , Glicoproteína IIb da Membrana de Plaquetas/genética , Glicoproteína IIb da Membrana de Plaquetas/metabolismo , Proteoglicanas/genética , Receptores de Trombina/genética , Receptores de Trombina/metabolismo , Vesículas Secretórias/genética , Vesículas Secretórias/ultraestrutura , Serotonina/metabolismo , Linfócitos T Citotóxicos/metabolismo , Linfócitos T Citotóxicos/patologia , Trombina/genética , Trombina/metabolismo , Trombose/genética , Trombose/patologia , Proteínas de Transporte Vesicular/genética , beta-Tromboglobulina/genética , beta-Tromboglobulina/metabolismo
15.
Proc Natl Acad Sci U S A ; 102(28): 9820-5, 2005 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-15994237

RESUMO

The ability of activated platelets to adhere to each other at sites of vascular injury depends on the integrin alpha(IIb)beta(3). However, as aggregation continues, other signaling and adhesion molecules can contribute as well. We have previously shown that human platelets express on their surface the Eph receptor kinases EphA4 and EphB1 and the Eph kinase ligand ephrinB1. We now show that EphA4 is physically associated with alpha(IIb)beta(3) in resting platelets, increases its surface expression when platelets are activated, and colocalizes with alpha(IIb)beta(3) at sites of contact between platelets. We also show that Eph/ephrin interactions can support the stable accumulation of platelets on collagen under flow and contribute to postengagement "outside-in" signaling through alpha(IIb)beta(3) by stabilizing platelet aggregates and facilitating tyrosine phosphorylation of the beta(3) cytoplasmic domain. beta(3) phosphorylation allows myosin to bind to alpha(IIb)beta(3) and clot retraction to occur. The data support a model in which the onset of aggregation permits Eph/ephrin interactions to occur, after which signaling downstream from ephrinB1 and its receptors favors continued growth and stability of the thrombus by several mechanisms, including positive effects on outside-in signaling through alpha(IIb)beta(3).


Assuntos
Efrina-B1/metabolismo , Agregação Plaquetária/fisiologia , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/metabolismo , Receptor EphA4/metabolismo , Transdução de Sinais/fisiologia , Trombose/metabolismo , Citometria de Fluxo , Imunofluorescência , Humanos , Imunoprecipitação , Trombose/sangue
16.
Semin Thromb Hemost ; 30(4): 399-410, 2004 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15354261

RESUMO

The theme of this review is that formation of a stable hemostatic plug requires adhesive interactions and signaling events that continue beyond the initial phases of platelet aggregation. These interactions and events are facilitated and, in some cases made possible, by the persistent close contacts between platelets that can only occur after the onset of aggregation. The molecules that are involved include integrins, cell adhesion molecules, receptor tyrosine kinases, and ligands that are either attached to or shed from the surface of activated platelets. The picture that emerges is one in which events after aggregation are nearly as complex as those that precede aggregation and the initiation of platelet plug formation.


Assuntos
Plaquetas/fisiologia , Comunicação Celular/fisiologia , Animais , Moléculas de Adesão Celular/fisiologia , Humanos , Modelos Biológicos , Ativação Plaquetária , Agregação Plaquetária , Transdução de Sinais
17.
Blood ; 103(4): 1348-55, 2004 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-14576067

RESUMO

We have previously shown that platelets express 2 receptor tyrosine kinases, EphA4 and EphB1, and the Eph kinase ligand, ephrinB1, and proposed that transcellular Eph/ephrin interactions made possible by the onset of platelet aggregation promote the further growth and stability of the hemostatic plug. The present study examines how this might occur. The results show that clustering of either ephrinB1 or EphA4 causes platelets to adhere to immobilized fibrinogen via alpha(IIb)beta(3). Adhesion occurs more slowly than with adenosine diphosphate (ADP) and requires phosphatidylinositol 3 (PI3)-kinase and protein kinase C activity but not ephrinB1 phosphorylation. By itself, Eph and ephrin signaling is insufficient to cause aggregation or the binding of soluble fibrinogen, but it can potentiate aggregation initiated by a Ca(++) ionophore or by agonists for thrombin and thromboxane receptors. It also enhances Rap1 activation without requiring ADP secretion, ephrinB1 phosphorylation, or the activation of PI3-kinase and Src. From this we conclude that (1) Eph/ephrin signaling enhances the ability of platelet agonists to cause aggregation provided that those agonists can increase cytosolic Ca(++); (2) this is accomplished in part by activating Rap1; and (3) these effects require oligomerization of ephrinB1 but not phosphotyrosine-based interactions with the ephrinB1 cytoplasmic domain.


Assuntos
Plaquetas/metabolismo , Efrina-B1/metabolismo , Agregação Plaquetária/fisiologia , Transdução de Sinais/fisiologia , Proteínas rap1 de Ligação ao GTP/metabolismo , Efrina-A4/genética , Efrina-A4/metabolismo , Humanos , Fosforilação , Adesividade Plaquetária/fisiologia , Proteínas Quinases/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...