Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 11(1): 18294, 2021 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-34521962

RESUMO

The assessment of gaps and steps in acetabular fractures is challenging. Data from various imaging techniques to enable accurate quantification of acetabular fracture displacement are limited. The aim of this study was to assess the accuracy of pelvic radiographs, intraoperative fluoroscopy, and computed tomography (CT) in detecting gaps and step-offs in acetabular fractures. Sixty patients, surgically treated for acetabular fractures, were included. Five observers (5400 measurements) measured the gaps and step-offs on radiographs and CT scans. Intraoperative fluoroscopy images were reassessed for the presence of gaps and/or step-offs. Preoperatively, 25% of the gaps and 40% of the step-offs were undetected on radiographs compared to CT. Postoperatively, 52% of the gaps and 80% of the step-offs were missed on radiographs compared to CT. Radiograph analysis led to a significantly smaller gap and step-off compared to the CT measurements, an underestimation by a factor of two. Approximately 70% of the residual gaps and step-offs was not detected using intraoperative fluoroscopy. Gaps and step-offs that exceed the critical cut-off indicating worse prognosis often remained undetected on radiographs compared to CT scans. Less-experienced observers tend to overestimate gaps and step-offs compared to the more-experienced observers. In acetabular fracture treatment, gaps and step-offs were often undetected and underestimated on radiographs and intraoperative fluoroscopy in comparison with CT scans. This means that CT is superior to radiographs in detecting acetabular fracture displacement, which is clinically relevant for patient counselling regarding treatment decisions and prognosis.


Assuntos
Acetábulo/lesões , Fraturas Ósseas/diagnóstico por imagem , Acetábulo/diagnóstico por imagem , Acetábulo/cirurgia , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Fluoroscopia , Fixação Interna de Fraturas/métodos , Fraturas Ósseas/diagnóstico , Fraturas Ósseas/cirurgia , Humanos , Cuidados Intraoperatórios , Masculino , Pessoa de Meia-Idade , Redução Aberta/métodos , Radiografia , Tomografia Computadorizada por Raios X , Resultado do Tratamento , Adulto Jovem
2.
J Appl Microbiol ; 94(4): 571-9, 2003.
Artigo em Inglês | MEDLINE | ID: mdl-12631192

RESUMO

AIMS: The effect of critical pulsed electric field (PEF) process parameters, such as electric field strength, pulse length and number of pulses, on inactivation of Lactobacillus plantarum was investigated. METHODS AND RESULTS: Experiments were performed in a pH 4.5 sodium phosphate buffer having a conductivity of 0.1 S m-1, using a laboratory-scale continuous PEF apparatus with a co-linear treatment chamber. An inactivation model was developed as a function of field strength, pulse length and number of pulses. Based on this inactivation model, the conditions for a PEF treatment were optimized with respect to the minimum energy required to obtain a certain level of inactivation. It was shown that the least efficient process parameter in the range investigated was the number of pulses. The most efficient way to optimize inactivation of Lact. plantarum was to increase the field strength up to 25.7 kV cm-1, at the shortest pulse length investigated, 0.85 micros, and using a minimum number of pulses. The highest inactivation of Lact. plantarum at the lowest energy costs is obtained by using the equation: E=26.7tau0.23, in which E is the field strength and tau the pulse length. An optimum is reached by substituting tau with 5.1. CONCLUSIONS: This study demonstrates that the correct choice of parameters, as predicted by the model described here, can considerably improve the PEF process. SIGNIFICANCE AND IMPACT OF THE STUDY: The knowledge gained in this study improves the understanding of the limitations and opportunities of the PEF process. Consequently, the advantage of the PEF process as a new option for non-thermal decontamination can be better utilized.


Assuntos
Estimulação Elétrica/métodos , Conservação de Alimentos/métodos , Lactobacillus/crescimento & desenvolvimento , Modelos Biológicos , Microbiologia de Alimentos , Humanos , Concentração de Íons de Hidrogênio , Fatores de Tempo
3.
Appl Environ Microbiol ; 67(7): 3092-101, 2001 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-11425727

RESUMO

Membrane permeabilization due to pulsed electric field (PEF) treatment of gram-positive Lactobacillus cells was investigated by using propidium iodide uptake and single-cell analysis with flow cytometry. Electric field strength, energy input, treatment time, and growth phase affected membrane permeabilization of Lactobacillus plantarum during PEF treatment. A correlation between PEF inactivation and membrane permeabilization of L. plantarum cells was demonstrated, whereas no relationship was observed between membrane permeabilization and heat inactivation. The same results were obtained with a Lactobacillus fermentum strain, but the latter organism was more PEF resistant and exhibited less membrane permeabilization, indicating that various bacteria have different responses to PEF treatment. While membrane permeabilization was the main factor involved in the mechanism of inactivation, the growth phase and the acidity of the environment also influenced inactivation. By using flow cytometry it was possible to sort cells in the L. plantarum population based on different cell sizes and shapes, and the results were confirmed by image analysis. An apparent effect of morphology on membrane permeabilization was observed, and larger cells were more easily permeabilized than smaller cells. In conclusion, our results indicate that the ability of PEF treatment to cause membrane permeabilization is an important factor in determining inactivation. This finding should have an effect on the final choice of the processing parameters used so that all microorganisms can be inactivated and, consequently, on the use of PEF treatment as an alternative method for preserving food products.


Assuntos
Permeabilidade da Membrana Celular , Eletricidade , Lactobacillus/fisiologia , Meios de Cultura , Citometria de Fluxo , Temperatura Alta , Processamento de Imagem Assistida por Computador , Cinética , Lactobacillus/citologia , Propídio/metabolismo
4.
Appl Environ Microbiol ; 65(12): 5364-71, 1999 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-10583990

RESUMO

The effects of pulsed electric field (PEF) treatment and processing factors on the inactivation kinetics of Listeria innocua NCTC 11289 were investigated by using a pilot plant PEF unit with a flow rate of 200 liters/h. The electric field strength, pulse length, number of pulses, and inlet temperature were the most significant process factors influencing the inactivation kinetics. Product factors (pH and conductivity) also influenced the inactivation kinetics. In phosphate buffer at pH 4.0 and 0.5 S/m at 40 degrees C, a 3. 0-V/microm PEF treatment at an inlet temperature of 40 degrees C resulted in > or = 6.3 log inactivation of strain NCTC 11289 at 49.5 degrees C. A synergistic effect between temperature and PEF inactivation was also observed. The inactivation obtained with PEF was compared to the inactivation obtained with heat. We found that heat inactivation was less effective than PEF inactivation under similar time and temperature conditions. L. innocua cells which were incubated for a prolonged time in the stationary phase were more resistant to the PEF treatment, indicating that the physiological state of the microorganism plays a role in inactivation by PEF. Sublethal injury of cells was observed after PEF treatment, and the injury was more severe when the level of treatment was increased. Overall, our results indicate that it may be possible to use PEF in future applications in order to produce safe products.


Assuntos
Estimulação Elétrica , Listeria/fisiologia , Condutividade Elétrica , Temperatura Alta , Concentração de Íons de Hidrogênio , Cinética , Listeria/crescimento & desenvolvimento , Listeria/efeitos da radiação , Temperatura
5.
Appl Environ Microbiol ; 64(2): 509-14, 1998 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16349500

RESUMO

Knowledge of the mechanism of pressure-induced inactivation of microorganisms could be helpful in defining an effective, relatively mild pressure treatment as a means of decontamination, especially in combination with other physical treatments or antimicrobial agents. We have studied the effect of high pressure on Lactobacillus plantarum grown at pH 5.0 and 7.0. The classical inactivation kinetics were compared with a number of events related to the acid-base physiology of the cell, i.e., activity of F(0)F(1) ATPase, intracellular pH, acid efflux, and intracellular ATP pool. Cells grown at pH 5.0 were more resistant to pressures of 250 MPa than were cells grown at pH 7.0. This difference in resistance may be explained by a higher F(0)F(1) ATPase activity, better ability to maintain a DeltapH, or a higher acid efflux of the cells grown at pH 5.0. After pressure treatment at 250 MPa, the F(0)F(1) ATPase activity was decreased, the ability to maintain a DeltapH was reduced, and the acid efflux was impaired. The ATP pool increased initially after mild pressure treatment and finally decreased after prolonged treatment. The observations on acid efflux and the ATP pool suggest that the glycolysis is affected by high pressure later than is the F(0)F(1) ATPase activity. Although functions related to the membrane-bound ATPase activity were impaired, no morphological changes of the membrane could be observed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...