Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 7(20): 17295-17304, 2022 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-35647464

RESUMO

Herein, a novel PdZn/g-C3N4 nanocomposite electrocatalyst, PdZnGCN, prepared from a facile hydrothermal reduction procedure for an efficient CO2 to CO conversion has been examined. This composite catalyst reduces CO2 at a thermodynamic overpotential of 0.79 V versus RHE with a 93.6% CO Faradaic efficiency and a CO partial current density of 4.4 mA cm-2. Moreover, the turnover frequency for PdZnGCN reaches 20 974 h-1 with an average selectivity of 95.4% for CO after 1 h and an energy efficiency approaching 59%, which is superior to most reported noble metals and metal alloys as electrocatalysts. The enhanced catalytic activity of this nanocomposite is due to synergistic interactions between PdZn and g-C3N4 as evidenced by optimum work function, zeta potential, CO desorption rate, and downshifted d-band center. Furthermore, suppressed grain growth during the formation of nanocomposites also results in faster reaction kinetics, as demonstrated by a lower Tafel slope (93.6 mV/dec) and a larger electrochemically active surface, consequently enhancing the overall performance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...