Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Virol ; 98(7): e0058024, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38856640

RESUMO

Hepatitis E virus (HEV) poses a global threat, which currently remains understudied in terms of host interactions. Epidermal growth factor receptor (EGFR) plays multifaceted roles in viral pathogenesis, impacting host-cell entry, viral replication, and host-defense modulation. On the one hand, EGFR signaling emerged as a major driver in innate immunity; on the other hand, a crosstalk between HEV and EGFR requires deeper analysis. We therefore aimed to dissect the receptor's involvement in the HEV life cycle. In persistently HEV-infected cells, the EGFR amount is decreased alongside with enhanced receptor internalization. As compared with the control ligand-induced EGFR, activation revealed an early receptor internalization and degradation in HEV-replicating cells, resulting in a notable EGFR signaling delay. Interestingly, inhibition or silencing of EGFR increased viral replication, extracellular and intracellular viral transcripts, and released infectious particles. The pro-viral impact of EGFR inhibition was attributed to (i) impaired expression of interferon-stimulated genes, (ii) activation of the autophagosomal system, (iii) virus-induced inhibition of lysosomal acidification, and (iv) a decrease of the cellular cholesterol level. IMPORTANCE: This study identifies epidermal growth factor receptor (EGFR) as a novel host factor affecting hepatitis E virus (HEV): EGFR downregulation promotes viral replication, release, and evasion from the innate immune response. The discovery that EGFR inhibition favors viral spread is particularly concerning for HEV patients undergoing EGFR inhibitor treatment.


Assuntos
Receptores ErbB , Vírus da Hepatite E , Hepatite E , Transdução de Sinais , Replicação Viral , Vírus da Hepatite E/fisiologia , Receptores ErbB/metabolismo , Receptores ErbB/antagonistas & inibidores , Humanos , Hepatite E/virologia , Hepatite E/metabolismo , Internalização do Vírus , Imunidade Inata , Interações Hospedeiro-Patógeno , Linhagem Celular
2.
Cell Mol Gastroenterol Hepatol ; 17(4): 589-605, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38190941

RESUMO

BACKGROUND: A peculiar feature of the hepatitis E virus (HEV) is its reliance on the exosomal route for viral release. Genomic replication is mediated via the viral polyprotein pORF1, yet little is known about its subcellular localization. METHODS: Subcellular localization of pORF1 and its subdomains, generated and cloned based on a structural prediciton of the viral replicase, was analyzed via confocal laser scanning microscopy. Exosomes released from cells were isolated via ultracentrifugation and analyzed by isopycnic density gradient centrifugation. This was followed by fluorimetry or Western blot analyses or reverse transcriptase-polymerase chain reaction to analyze separated particles in more detail. RESULTS: We found pORF1 to be accumulating within the endosomal system, most dominantly to multivesicular bodies (MVBs). Expression of the polyprotein's 7 subdomains revealed that the papain-like cysteine-protease (PCP) is the only domain localizing like the full-length protein. A PCP-deficient pORF1 mutant lost its association to MVBs. Strikingly, both pORF1 and PCP can be released via exosomes. Similarly, genomic RNA still is released via exosomes in the absence of pORF2/3. CONCLUSIONS: Taken together, we found that pORF1 localizes to MVBs in a PCP-dependent manner, which is followed by exosomal release. This reveals new aspects of HEV life cycle, because replication and release could be coupled at the endosomal interface. In addition, this may mediate capsid-independent spread or may facilitate the spread of viral infection, because genomes entering the cell during de novo infection readily encounter exosomally transferred pORF1.


Assuntos
Vírus da Hepatite E , Corpos Multivesiculares/metabolismo , Proteínas/metabolismo , Poliproteínas/metabolismo , Peptídeo Hidrolases/metabolismo
3.
Cell Mol Gastroenterol Hepatol ; 12(1): 159-180, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33601063

RESUMO

BACKGROUND AND AIMS: The Hepatitis E virus hijacks the endosomal system for its release. These structures are highly dependent on cholesterol. Hence, this study investigates the impact of HEV on cholesterol-metabolism, the effect of intracellular cholesterol content on HEV-release and the potential of cholesterol-modulators to serve as antivirals. METHODS: Intracellular cholesterol-content of cells was modulated and impacts on HEV were monitored using qPCR, Western blot, microscopy, virus-titration and density-gradient centrifugation. Blood-lipids and HEV-RNA were routinely quantified in chronically infected patients during follow-up visits. RESULTS: In HEV-infected cells, decreased levels of cholesterol are found. In patients, HEV infection decreases serum-lipid concentrations. Importantly, statin treatment herein increases viral titers. Similarly, reduction of intracellular cholesterol via simvastatin treatment increases viral release in vitro. On the contrary, elevating intracellular cholesterol via LDL or 25-hydroxycholesterol strongly reduces viral release due to enhanced lysosomal degradation of HEV. Drug-induced elevation of intracellular cholesterol via fenofibrate or PSC833 impairs HEV release via the same mechanism. CONCLUSIONS: This study analyses the crosstalk between HEV and intracellular cholesterol. The results highlight the importance of an intact cholesterol homeostasis for HEV-release and thereby identify a potential target for antiviral strategies. Especially fenofibrate is considered a promising novel antiviral against HEV. Beyond this, the study may help clinicians evaluating co-treatments of HEV-infected patients with statins, as this may be counter indicated.


Assuntos
Antivirais/farmacologia , Colesterol/metabolismo , Ciclosporinas/farmacologia , Fenofibrato/farmacologia , Vírus da Hepatite E/efeitos dos fármacos , Antivirais/química , Sobrevivência Celular/efeitos dos fármacos , Ciclosporinas/química , Fenofibrato/química , Humanos , Testes de Sensibilidade Microbiana , Células Tumorais Cultivadas , Replicação Viral/efeitos dos fármacos
4.
J Virol ; 95(7)2021 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-33472929

RESUMO

This study aims to gain deeper insight into HEV-induced innate immunity by characterizing the crosstalk between the virus and the host factor guanylate-binding protein 1 (GBP1). We observe that the amount of GBP1 is elevated upon infection, although number of transcripts is decreased, which is explained by a prolonged protein half-life. Modulation of GBP1 levels via overexpression significantly inhibits the viral life cycle. Use of various GBP-1 mutants revealed that the antiviral effect of GBP-1 on HEV is independent from the GTPase-activity, but depends on the capacity of GBP-1 to form GBP1 homodimers. This connects GBP-1 to the autophagosomal pathway. Indeed, dimerization competent GBP1 targets the viral capsid protein to the lysosomal compartment leading to inactivation of the viral particle. Most importantly, silencing of GBP1 abolishes the antiviral effect of IFNγ on HEV. In IFNγ treated cells the virus is targeted to lysosomal structures and destroyed therein. This process depends in part on GBP1. These observations about the relevance of GBP1 for type II interferon-mediated innate immunity against HEV could be a base for tailoring novel antivirals and improvement of disease management.IMPORTANCE Although HEV represents a worldwide public health problem with 20 million infections and 44.000 death cases per year, there are still no specific antivirals available and many aspects of the viral life cycle are not well understood. Here we identify the guanylate binding protein 1 (GBP1) as a restriction factor affecting life cycle of HEV. Surprisingly, the antiviral effect of GBP1 does not depend on its GTPase function, but on its capacity to homodimerize. We revealed that GBP1 exerts its antiviral activity by targeting HEV to the lysosomal compartment where the virus is inactivated. Most importantly, we observed that the antiviral effect of interferon-γ on HEV strongly depends on GBP1. Our observation that GBP1 impairs HEV and is crucial for the antiviral effect of interferons on HEV extends understanding of host defense-mechanisms. As the interferon-system represents a universal defense-mechanism, our study could help to design novel antivirals targeting.

5.
Viruses ; 10(6)2018 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-29865243

RESUMO

Every year, there are about 20 Mio hepatitis E virus (HEV) infections and 60,000 deaths that are associated with HEV worldwide. At the present, there exists no specific therapy for HEV. The natural compound silvestrol has a potent antiviral effect against the (-)-strand RNA-virus Ebola virus, and also against the (+)-strand RNA viruses Corona-, Picorna-, and Zika virus. The inhibitory effect on virus spread is due to an inhibition of the DEAD-box RNA helicase eIF4A, which is required to unwind structured 5'-untranslated regions (UTRs). This leads to an impaired translation of viral RNA. The HEV (+)-strand RNA genome contains a 5'-capped, short 5'-UTR. This study aims to analyze the impact of silvestrol on the HEV life cycle. Persistently infected A549 cells were instrumental. This study identifies silvestrol as a potent inhibitor of the release of HEV infectious viral particles. This goes along with a strongly reduced HEV capsid protein translation, retention of viral RNA inside the cytoplasm, and without major cytotoxic effects. Interestingly, in parallel silvestrol affects the activity of the antiviral major vault protein (MVP) by translocation from the cytoplasm to the perinuclear membrane. These data further characterize the complex antiviral activity of silvestrol and show silvestrol's broad spectrum of function, since HEV is a virus without complex secondary structures in its genome, but it is still affected.


Assuntos
Antivirais/farmacologia , Vírus da Hepatite E/efeitos dos fármacos , Triterpenos/farmacologia , Replicação Viral/efeitos dos fármacos , Células A549 , Proteínas do Capsídeo/metabolismo , Hepatite E/tratamento farmacológico , Humanos , RNA Viral/genética , Partículas de Ribonucleoproteínas em Forma de Abóbada/metabolismo , Liberação de Vírus/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...