Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microbiol Res ; 267: 127251, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36423546

RESUMO

Microorganisms degrade microplastics, but their potential is still not fully exploited, e.g., due to inadequate selection of microorganisms. We developed an effective selection method of microorganisms capable of polyethylene (PE) and polypropylene (PP) degradation and assessed the scale of polymer degradation by microbial populations. We isolated seven bacterial strains (three Priestia megaterium strains, Klebsiella pneumoniae, Pseudomonas fluorescens, Enterobacter ludwigii, Chryseobacterium sp.) and seven fungal strains (four Fusarium spp., two Lecanicillium spp. and Trichoderma sp.) with PE degradation potential, as well as seven bacterial strains (five Serratia marcescens and two Enterobacter spp.) and six fungal strains (four Aspergillus spp., Fusarium oxysporum and Penicillium granulatum) with PP degradation ability. Scanning electron microscopy (SEM) analysis confirmed the presence of a biofilm and revealed surface changes in both PE and PP pellets, but the greatest changes (microcracks and corrugations) were observed for PP incubated with bacteria. Fourier transform infrared (FTIR) spectroscopy confirmed the structural changes on the studied polymer surfaces. In conclusion, the isolation of plastic-degrading bacteria and fungi from waste landfills represents an effective strategy for the collection of microorganisms with high potential for PE and PP degradation. The bacteria and fungi revealed better potential for PP degradation and PE degradation, respectively.


Assuntos
Polietileno , Polipropilenos , Polietileno/química , Polietileno/metabolismo , Polipropilenos/metabolismo , Plásticos/metabolismo , Biodegradação Ambiental , Fungos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...