Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Clin Transl Immunology ; 13(2): e1486, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38299190

RESUMO

Objectives: Although antiretroviral therapy (ART) efficiently suppresses HIV viral load, immune dysregulation and dysfunction persist in people living with HIV (PLWH). γδ T cells are functionally impaired during untreated HIV infection, but the extent to which they are reconstituted upon ART is currently unclear. Methods: Utilising a cohort of ART-treated PLWH, we assessed the frequency and phenotype, characterised in vitro functional responses and defined the impact of immune checkpoint marker expression on effector functions of both Vδ1 and Vδ2 T cells. We additionally explore the in vitro expansion of Vδ2 T cells from PLWH on ART and the mechanisms by which such expanded cells may sense and kill HIV-infected targets. Results: A matured NK cell-like phenotype was observed for Vδ1 T cells among 25 ART-treated individuals (PLWH/ART) studied compared to 17 HIV-uninfected controls, with heightened expression of 2B4, CD160, TIGIT and Tim-3. Despite persistent phenotypic perturbations, Vδ1 T cells from PLWH/ART exhibited strong CD16-mediated activation and degranulation, which were suppressed upon Tim-3 and TIGIT crosslinking. Vδ2 T cell degranulation responses to the phosphoantigen (E)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate at concentrations up to 2 ng mL-1 were significantly impaired in an immune checkpoint-independent manner among ART-treated participants. Nonetheless, expanded Vδ2 T cells from PLWH/ART retained potent anti-HIV effector functions, with the NKG2D receptor contributing substantially to the elimination of infected cells. Conclusion: Our findings highlight that although significant perturbations remain within the γδ T cell compartment throughout ART-treated HIV, both subsets retain the capacity for robust anti-HIV effector functions.

3.
Nat Aging ; 3(12): 1576-1590, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37996758

RESUMO

Aging is a strong risk factor for atherosclerosis and induces accumulation of memory CD8+ T cells in mice and humans. Biological changes that occur with aging lead to enhanced atherosclerosis, yet the role of aging on CD8+ T cells during atherogenesis is unclear. In this study, using femle mice, we found that depletion of CD8+ T cells attenuated atherogenesis in aged, but not young, animals. Furthermore, adoptive transfer of splenic CD8+ T cells from aged wild-type, but not young wild-type, donor mice significantly enhanced atherosclerosis in recipient mice lacking CD8+ T cells. We also characterized T cells in healthy and atherosclerotic young and aged mice by single-cell RNA sequencing. We found specific subsets of age-associated CD8+ T cells, including a Granzyme K+ effector memory subset, that accumulated and was clonally expanded within atherosclerotic plaques. These had transcriptomic signatures of T cell activation, migration, cytotoxicity and exhaustion. Overall, our study identified memory CD8+ T cells as therapeutic targets for atherosclerosis in aging.


Assuntos
Aterosclerose , Placa Aterosclerótica , Humanos , Animais , Camundongos , Idoso , Linfócitos T CD8-Positivos , Células T de Memória , Camundongos Endogâmicos C57BL
4.
JCI Insight ; 8(7)2023 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-37036008

RESUMO

Pregnancy poses a greater risk for severe COVID-19; however, underlying immunological changes associated with SARS-CoV-2 during pregnancy are poorly understood. We defined immune responses to SARS-CoV-2 in unvaccinated pregnant and nonpregnant women with acute and convalescent COVID-19, quantifying 217 immunological parameters. Humoral responses to SARS-CoV-2 were similar in pregnant and nonpregnant women, although our systems serology approach revealed distinct antibody and FcγR profiles between pregnant and nonpregnant women. Cellular analyses demonstrated marked differences in NK cell and unconventional T cell activation dynamics in pregnant women. Healthy pregnant women displayed preactivated NK cells and γδ T cells when compared with healthy nonpregnant women, which remained unchanged during acute and convalescent COVID-19. Conversely, nonpregnant women had prototypical activation of NK and γδ T cells. Activation of CD4+ and CD8+ T cells and T follicular helper cells was similar in SARS-CoV-2-infected pregnant and nonpregnant women, while antibody-secreting B cells were increased in pregnant women during acute COVID-19. Elevated levels of IL-8, IL-10, and IL-18 were found in pregnant women in their healthy state, and these cytokine levels remained elevated during acute and convalescent COVID-19. Collectively, we demonstrate perturbations in NK cell and γδ T cell activation in unvaccinated pregnant women with COVID-19, which may impact disease progression and severity during pregnancy.


Assuntos
COVID-19 , Gravidez , Feminino , Humanos , SARS-CoV-2 , Células Matadoras Naturais , Linfócitos T CD8-Positivos , Anticorpos
5.
Eur J Immunol ; 53(6): e2250220, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36946072

RESUMO

Vγ9Vδ2 T cells can recognize various molecules associated with cellular stress or transformation, providing a unique avenue for the treatment of cancers or infectious diseases. Nonetheless, Vγ9Vδ2 T-cell-based immunotherapies frequently achieve suboptimal efficacies in vivo. Enhancing the cytotoxic effector function of Vγ9Vδ2 T cells is one potential avenue through which the immunotherapeutic potential of this subset may be improved. We compared the use of four pro-inflammatory cytokines on the effector phenotype and functions of in vitro expanded Vγ9Vδ2 T cells, and demonstrated TCR-independent cytotoxicity mediated through CD26, CD16, and NKG2D, which could be further enhanced by IL-23, IL-18, and IL-15 stimulation throughout expansion. This work defines promising culture conditions that could improve Vγ9Vδ2 T-cell-based immunotherapies and furthers our understanding of how this subset might recognize and target transformed or infected cells.


Assuntos
Receptores de Antígenos , Linfócitos T , Humanos , Citocinas/metabolismo , Receptores de Antígenos/imunologia , Proliferação de Células , Linfócitos T/citologia , Linfócitos T/metabolismo
6.
iScience ; 26(3): 106269, 2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36936791

RESUMO

While gaining interest as treatment for cancer and infectious disease, the clinical efficacy of Vγ9Vδ2 T cell-based immunotherapeutics has to date been limited. An improved understanding of γδ T cell heterogeneity across lymphoid and non-lymphoid tissues, before and after pharmacological expansion, is required. Here, we describe the phenotype and tissue distribution of Vγ9Vδ2 T cells at steady state and following in vivo pharmacological expansion in pigtail macaques. Intravenous phosphoantigen administration with subcutaneous rhIL-2 drove robust expansion of Vγ9Vδ2 T cells in blood and pulmonary mucosa, while expansion was confined to the pulmonary mucosa following intratracheal antigen administration. Peripheral blood Vγ9Vδ2 T cell expansion was polyclonal, and associated with a significant loss of CCR6 expression due to IL-2-mediated receptor downregulation. Overall, we show the tissue distribution and phenotype of in vivo pharmacologically expanded Vγ9Vδ2 T cells can be altered based on the antigen administration route, with implications for tissue trafficking and the clinical efficacy of Vγ9Vδ2 T cell immunotherapeutics.

7.
Clin Exp Immunol ; 210(2): 163-174, 2022 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-36053502

RESUMO

Natural killer (NK) cells are important anti-viral effector cells. The function and phenotype of the NK cells that constitute an individual's NK cell repertoire can be influenced by ongoing or previous viral infections. Indeed, infection with human cytomegalovirus (HCMV) drives the expansion of a highly differentiated NK cell population characterized by expression of CD57 and the activating NKG2C receptor. This NK cell population has also been noted to occur in HIV-1-infected individuals. We evaluated the NK cells of HIV-1-infected and HIV-1-uninfected individuals to determine the relative frequency of highly differentiated CD57+NKG2C+ NK cells and characterize these cells for their receptor expression and responsiveness to diverse stimuli. Highly differentiated CD57+NKG2C+ NK cells occurred at higher frequencies in HCMV-infected donors relative to HCMV-uninfected donors and were dramatically expanded in HIV-1/HCMV co-infected donors. The expanded CD57+NKG2C+ NK cell population in HIV-1-infected donors remained stable following antiretroviral therapy. CD57+NKG2C+ NK cells derived from HIV-1-infected individuals were robustly activated by antibody-dependent stimuli that contained anti-HIV-1 antibodies or therapeutic anti-CD20 antibody, and these NK cells mediated cytolysis through NKG2C. Lastly, CD57+NKG2C+ NK cells from HIV-1-infected donors were characterized by reduced expression of the inhibitory NKG2A receptor. The abundance of highly functional CD57+NKG2C+ NK cells in HIV-1-infected individuals raises the possibility that these NK cells could play a role in HIV-1 pathogenesis or serve as effector cells for therapeutic/cure strategies.


Assuntos
Infecções por HIV , Células Matadoras Naturais , Humanos , HIV-1 , Subfamília C de Receptores Semelhantes a Lectina de Células NK , Fenótipo , Infecções por HIV/imunologia
8.
JCI Insight ; 7(15)2022 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-35737459

RESUMO

Older people exhibit dysregulated innate immunity to respiratory viral infections, including influenza and SARS-CoV-2, and show an increase in morbidity and mortality. Nanoparticles are a potential practical therapeutic that could reduce exaggerated innate immune responses within the lungs during viral infection. However, such therapeutics have not been examined for effectiveness during respiratory viral infection, particular in aged hosts. Here, we employed a lethal model of influenza viral infection in vulnerable aged mice to examine the ability of biodegradable, cargo-free nanoparticles, designated ONP-302, to resolve innate immune dysfunction and improve outcomes during infection. We administered ONP-302 via i.v. injection to aged mice at day 3 after infection, when the hyperinflammatory innate immune response was already established. During infection, we found that ONP-302 treatment reduced the numbers of inflammatory monocytes within the lungs and increased their number in both the liver and spleen, without impacting viral clearance. Importantly, cargo-free nanoparticles reduced lung damage, reduced histological lung inflammation, and improved gas exchange and, ultimately, the clinical outcomes in influenza-infected aged mice. In conclusion, ONP-302 improves outcomes in influenza-infected aged mice. Thus, our study provides information concerning a practical therapeutic, which, if translated clinically, could improve disease outcomes for vulnerable older patients suffering from respiratory viral infections.


Assuntos
COVID-19 , Doenças Transmissíveis , Influenza Humana , Nanopartículas , Infecções por Orthomyxoviridae , Animais , Humanos , Pulmão/patologia , Camundongos , Monócitos , SARS-CoV-2
9.
ACS Nano ; 16(8): 11769-11780, 2022 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-35758934

RESUMO

Humans commonly have low level antibodies to poly(ethylene) glycol (PEG) due to environmental exposure. Lipid nanoparticle (LNP) mRNA vaccines for SARS-CoV-2 contain small amounts of PEG, but it is not known whether PEG antibodies are enhanced by vaccination and what their impact is on particle-immune cell interactions in human blood. We studied plasma from 130 adults receiving either the BNT162b2 (Pfizer-BioNTech) or mRNA-1273 (Moderna) mRNA vaccines or no SARS-CoV-2 vaccine for PEG-specific antibodies. Anti-PEG IgG was commonly detected prior to vaccination and was significantly boosted a mean of 13.1-fold (range 1.0-70.9) following mRNA-1273 vaccination and a mean of 1.78-fold (range 0.68-16.6) following BNT162b2 vaccination. Anti-PEG IgM increased 68.5-fold (range 0.9-377.1) and 2.64-fold (0.76-12.84) following mRNA-1273 and BNT162b2 vaccination, respectively. The rise in PEG-specific antibodies following mRNA-1273 vaccination was associated with a significant increase in the association of clinically relevant PEGylated LNPs with blood phagocytes ex vivo. PEG antibodies did not impact the SARS-CoV-2 specific neutralizing antibody response to vaccination. However, the elevated levels of vaccine-induced anti-PEG antibodies correlated with increased systemic reactogenicity following two doses of vaccination. We conclude that PEG-specific antibodies can be boosted by LNP mRNA vaccination and that the rise in PEG-specific antibodies is associated with systemic reactogenicity and an increase of PEG particle-leukocyte association in human blood. The longer-term clinical impact of the increase in PEG-specific antibodies induced by lipid nanoparticle mRNA vaccines should be monitored. It may be useful to identify suitable alternatives to PEG for developing next-generation LNP vaccines to overcome PEG immunogenicity in the future.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Adulto , Humanos , Vacina BNT162 , SARS-CoV-2 , COVID-19/prevenção & controle , Polietilenoglicóis , Anticorpos , Vacinação , Anticorpos Antivirais , Anticorpos Neutralizantes , Vacinas de mRNA
10.
J Immunol ; 208(10): 2267-2271, 2022 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-35487578

RESUMO

Understanding the generation of immunity to SARS-CoV-2 in lymphoid tissues draining the site of infection has implications for immunity to SARS-CoV-2. We performed tonsil biopsies under local anesthesia in 19 subjects who had recovered from SARS-CoV-2 infection 24-225 d previously. The biopsies yielded >3 million cells for flow cytometric analysis in 17 subjects. Total and SARS-CoV-2 spike-specific germinal center B cells, and T follicular helper cells, were readily detectable in human tonsils early after SARS-CoV-2 infection, as assessed by flow cytometry. Responses were higher in samples within 2 mo of infection but still detectable in some subjects out to 7 mo following infection. We conclude the tonsils are a secondary lymphoid organ that develop germinal center responses to SARS-CoV-2 infection and could play a role in the long-term development of immunity.


Assuntos
COVID-19 , Anticorpos Antivirais , Centro Germinativo , Humanos , Tonsila Palatina , SARS-CoV-2 , Células T Auxiliares Foliculares
11.
Nat Immunol ; 23(5): 768-780, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35314848

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and vaccination elicit CD4+ T cell responses to the spike protein, including circulating follicular helper T (cTFH) cells that correlate with neutralizing antibodies. Using a novel HLA-DRB1*15:01/S751 tetramer to track spike-specific CD4+ T cells, we show that primary infection or vaccination induces robust S751-specific CXCR5- and cTFH cell memory responses. Secondary exposure induced recall of CD4+ T cells with a transitory CXCR3+ phenotype, and drove expansion of cTFH cells transiently expressing ICOS, CD38 and PD-1. In both contexts, cells exhibited a restricted T cell antigen receptor repertoire, including a highly public clonotype and considerable clonotypic overlap between CXCR5- and cTFH populations. Following a third vaccine dose, the rapid re-expansion of spike-specific CD4+ T cells contrasted with the comparatively delayed increase in antibody titers. Overall, we demonstrate that stable pools of cTFH and memory CD4+ T cells established by infection and/or vaccination are efficiently recalled upon antigen reexposure and may contribute to long-term protection against SARS-CoV-2.


Assuntos
COVID-19 , SARS-CoV-2 , Anticorpos Neutralizantes , Anticorpos Antivirais , Epitopos/metabolismo , Humanos , Receptores CXCR5/metabolismo , Linfócitos T Auxiliares-Indutores
12.
Sci Immunol ; 7(67): eabf5314, 2022 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-35089815

RESUMO

Recent studies have established that memory B cells, largely thought to be circulatory in the blood, can take up long-term residency in inflamed tissues, analogous to widely described tissue-resident T cells. The dynamics of recruitment and retention of memory B cells to tissues and their immunological purpose remains unclear. Here, we characterized tissue-resident memory B cells (BRM) that are stably maintained in the lungs of mice after pulmonary influenza infection. Influenza-specific BRM were localized within inducible bronchus-associated lymphoid tissues (iBALTs) and displayed transcriptional signatures distinct from classical memory B cells in the blood or spleen while showing partial overlap with memory B cells in lung-draining lymph nodes. We identified lung-resident markers, including elevated expression of CXCR3, CCR6, and CD69, on hemagglutinin (HA)- and nucleoprotein (NP)-specific lung BRM. We found that CCR6 facilitates increased recruitment and/or retention of BRM in lungs and differentiation into antibody-secreting cells upon recall. Although expression of CXCR3 and CCR6 was comparable in total and influenza-specific memory B cells isolated across tissues of human donors, CD69 expression was higher in memory B cells from lung and draining lymph nodes of human organ donors relative to splenic and PBMC-derived populations, indicating that mechanisms underpinning BRM localization may be evolutionarily conserved. Last, we demonstrate that human memory B cells in lungs are transcriptionally distinct to populations in lung-draining lymph nodes or PBMCs. These data suggest that BRM may constitute a discrete component of B cell immunity, positioned at the lung mucosa for rapid humoral response against respiratory viral infections.


Assuntos
Influenza Humana/imunologia , Pulmão/imunologia , Células B de Memória/imunologia , Infecções por Orthomyxoviridae/imunologia , Animais , Feminino , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Fenótipo
13.
Clin Transl Immunology ; 10(11): e1355, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34765193

RESUMO

OBJECTIVES: Tuberculosis comorbidity with chronic diseases including diabetes, HIV and chronic kidney disease is of rising concern. In particular, latent tuberculosis infection (LTBI) comorbidity with end-stage kidney disease (ESKD) is associated with up to 52.5-fold increased risk of TB reactivation to active tuberculosis infection (ATBI). The immunological mechanisms driving this significant rise in TB reactivation are poorly understood. To contribute to this understanding, we performed a comprehensive assessment of soluble and cellular immune features amongst a unique cohort of patients comorbid with ESKD and LTBI. METHODS: We assessed the plasma and cellular immune profiles from patients with and without ESKD and/or LTBI (N = 40). We characterised antibody glycosylation, serum complement and cytokine levels. We also assessed classical and non-classical monocytes and T cells with flow cytometry. Using a systems-based approach, we identified key immunological features that discriminate between the different disease states. RESULTS: Individuals with ESKD exhibited a highly inflammatory plasma profile and an activated cellular state compared with those without ESKD, including higher levels of inflammatory antibody Fc glycosylation structures and activated CX3CR1+ monocytes that correlate with increased inflammatory plasma cytokines. Similar elevated inflammatory signatures were also observed in ESKD+/LTBI+ compared with ESKD-/LTBI+, suggesting that ESKD induces an overwhelming inflammatory immune state. In contrast, no significant inflammatory differences were observed when comparing LTBI+ and LTBI- individuals. CONCLUSION: Our study highlights the highly inflammatory state induced by ESKD. We hypothesise that this inflammatory state could contribute to the increased risk of TB reactivation in ESKD patients.

14.
Cell Rep ; 37(2): 109822, 2021 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-34610292

RESUMO

Potent neutralizing monoclonal antibodies are one of the few agents currently available to treat COVID-19. SARS-CoV-2 variants of concern (VOCs) that carry multiple mutations in the viral spike protein can exhibit neutralization resistance, potentially affecting the effectiveness of some antibody-based therapeutics. Here, the generation of a diverse panel of 91 human, neutralizing monoclonal antibodies provides an in-depth structural and phenotypic definition of receptor binding domain (RBD) antigenic sites on the viral spike. These RBD antibodies ameliorate SARS-CoV-2 infection in mice and hamster models in a dose-dependent manner and in proportion to in vitro, neutralizing potency. Assessing the effect of mutations in the spike protein on antibody recognition and neutralization highlights both potent single antibodies and stereotypic classes of antibodies that are unaffected by currently circulating VOCs, such as B.1.351 and P.1. These neutralizing monoclonal antibodies and others that bind analogous epitopes represent potentially useful future anti-SARS-CoV-2 therapeutics.


Assuntos
Enzima de Conversão de Angiotensina 2/imunologia , Anticorpos Neutralizantes/imunologia , SARS-CoV-2/imunologia , Enzima de Conversão de Angiotensina 2/metabolismo , Enzima de Conversão de Angiotensina 2/ultraestrutura , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/uso terapêutico , Anticorpos Neutralizantes/ultraestrutura , Anticorpos Antivirais/imunologia , COVID-19/imunologia , Cricetinae , Microscopia Crioeletrônica/métodos , Epitopos/imunologia , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Testes de Neutralização , Ligação Proteica/fisiologia , Receptores Virais/metabolismo , SARS-CoV-2/patogenicidade , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia
15.
J Immunol ; 207(2): 735-744, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-34244296

RESUMO

Characterization of germinal center B and T cell responses yields critical insights into vaccine immunogenicity. Nonhuman primates are a key preclinical animal model for human vaccine development, allowing both lymph node (LN) and circulating immune responses to be longitudinally sampled for correlates of vaccine efficacy. However, patterns of vaccine Ag drainage via the lymphatics after i.m. immunization can be stochastic, driving uneven deposition between lymphoid sites and between individual LN within larger clusters. To improve the accurate isolation of Ag-exposed LN during biopsies and necropsies, we developed and validated a method for coformulating candidate vaccines with tattoo ink in both mice and pigtail macaques. This method allowed for direct visual identification of vaccine-draining LN and evaluation of relevant Ag-specific B and T cell responses by flow cytometry. This approach is a significant advancement in improving the assessment of vaccine-induced immunity in highly relevant nonhuman primate models.


Assuntos
Imunogenicidade da Vacina/imunologia , Linfonodos/imunologia , Vacinas/imunologia , Animais , Anticorpos Antivirais/imunologia , Linfócitos B/imunologia , Células Cultivadas , Feminino , Centro Germinativo/imunologia , Humanos , Imunização/métodos , Tinta , Macaca mulatta , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Tatuagem/métodos , Vacinação/métodos
16.
Immunol Cell Biol ; 99(9): 990-1000, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34086357

RESUMO

In-depth understanding of human T-cell-mediated immunity in coronavirus disease 2019 (COVID-19) is needed if we are to optimize vaccine strategies and immunotherapies. Identification of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) T-cell epitopes and generation of peptide-human leukocyte antigen (peptide-HLA) tetramers facilitate direct ex vivo analyses of SARS-CoV-2-specific T cells and their T-cell receptor (TCR) repertoires. We utilized a combination of peptide prediction and in vitro peptide stimulation to validate novel SARS-CoV-2 epitopes restricted by HLA-A*24:02, one of the most prominent HLA class I alleles, especially in Indigenous and Asian populations. Of the peptides screened, three spike-derived peptides generated CD8+ IFNγ+ responses above background, S1208-1216 (QYIKWPWYI), S448-456 (NYNYLYRLF) and S193-201 (VFKNIDGYF), with S1208 generating immunodominant CD8+ IFNγ+ responses. Using peptide-HLA-I tetramers, we performed direct ex vivo tetramer enrichment for HLA-A*24:02-restricted CD8+ T cells in COVID-19 patients and prepandemic controls. The precursor frequencies for HLA-A*24:02-restricted epitopes were within the range previously observed for other SARS-CoV-2 epitopes for both COVID-19 patients and prepandemic individuals. Naïve A24/SARS-CoV-2-specific CD8+ T cells increased nearly 7.5-fold above the average precursor frequency during COVID-19, gaining effector and memory phenotypes. Ex vivo single-cell analyses of TCRαß repertoires found that the A24/S448+ CD8+ T-cell TCRαß repertoire was driven by a common TCRß chain motif, whereas the A24/S1208+ CD8+ TCRαß repertoire was diverse across COVID-19 patients. Our study provides an in depth characterization and important insights into SARS-CoV-2-specific CD8+ T-cell responses associated with a prominent HLA-A*24:02 allomorph. This contributes to our knowledge on adaptive immune responses during primary COVID-19 and could be exploited in vaccine or immunotherapeutic approaches.


Assuntos
Linfócitos T CD8-Positivos/imunologia , COVID-19 , Antígeno HLA-A24 , Receptores de Antígenos de Linfócitos T/imunologia , COVID-19/imunologia , Humanos , SARS-CoV-2
17.
Immunity ; 54(5): 1066-1082.e5, 2021 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-33951417

RESUMO

To better understand primary and recall T cell responses during coronavirus disease 2019 (COVID-19), it is important to examine unmanipulated severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-specific T cells. By using peptide-human leukocyte antigen (HLA) tetramers for direct ex vivo analysis, we characterized CD8+ T cells specific for SARS-CoV-2 epitopes in COVID-19 patients and unexposed individuals. Unlike CD8+ T cells directed toward subdominant epitopes (B7/N257, A2/S269, and A24/S1,208) CD8+ T cells specific for the immunodominant B7/N105 epitope were detected at high frequencies in pre-pandemic samples and at increased frequencies during acute COVID-19 and convalescence. SARS-CoV-2-specific CD8+ T cells in pre-pandemic samples from children, adults, and elderly individuals predominantly displayed a naive phenotype, indicating a lack of previous cross-reactive exposures. T cell receptor (TCR) analyses revealed diverse TCRαß repertoires and promiscuous αß-TCR pairing within B7/N105+CD8+ T cells. Our study demonstrates high naive precursor frequency and TCRαß diversity within immunodominant B7/N105-specific CD8+ T cells and provides insight into SARS-CoV-2-specific T cell origins and subsequent responses.


Assuntos
Linfócitos T CD8-Positivos/imunologia , COVID-19/imunologia , Proteínas do Nucleocapsídeo de Coronavírus/imunologia , Epitopos Imunodominantes/imunologia , Receptores de Antígenos de Linfócitos T/imunologia , SARS-CoV-2/imunologia , Adulto , Idoso , Motivos de Aminoácidos , Linfócitos T CD4-Positivos , Criança , Convalescença , Proteínas do Nucleocapsídeo de Coronavírus/química , Epitopos de Linfócito T/química , Epitopos de Linfócito T/imunologia , Feminino , Humanos , Epitopos Imunodominantes/química , Masculino , Pessoa de Meia-Idade , Fenótipo , Fosfoproteínas/química , Fosfoproteínas/imunologia , Receptores de Antígenos de Linfócitos T/química , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T alfa-beta/química , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Receptores de Antígenos de Linfócitos T alfa-beta/imunologia , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/imunologia
18.
Clin Transl Immunology ; 10(3): e1264, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33747512

RESUMO

OBJECTIVES: Endemic human coronaviruses (hCoVs) circulate worldwide but cause minimal mortality. Although seroconversion to hCoV is near ubiquitous during childhood, little is known about hCoV-specific T-cell memory in adults. METHODS: We quantified CD4 T-cell and antibody responses to hCoV spike antigens in 42 SARS-CoV-2-uninfected individuals. Antigen-specific memory T cells and circulating T follicular helper (cTFH) cells were identified using an activation-induced marker assay and characterised for memory phenotype and chemokine receptor expression. RESULTS: T-cell responses were widespread within conventional memory and cTFH compartments but did not correlate with IgG titres. SARS-CoV-2 cross-reactive T cells were observed in 48% of participants and correlated with HKU1 memory. hCoV-specific T cells exhibited a CCR6+ central memory phenotype in the blood, but were enriched for frequency and CXCR3 expression in human lung-draining lymph nodes. CONCLUSION: Overall, hCoV-specific humoral and cellular memory are independently maintained, with a shared phenotype existing among coronavirus-specific CD4 T cells. This understanding of endemic coronavirus immunity provides insight into the homeostatic maintenance of immune responses that are likely to be critical components of protection against SARS-CoV-2.

19.
Nat Commun ; 12(1): 1403, 2021 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-33658497

RESUMO

SARS-CoV-2 vaccines are advancing into human clinical trials, with emphasis on eliciting high titres of neutralising antibodies against the viral spike (S). However, the merits of broadly targeting S versus focusing antibody onto the smaller receptor binding domain (RBD) are unclear. Here we assess prototypic S and RBD subunit vaccines in homologous or heterologous prime-boost regimens in mice and non-human primates. We find S is highly immunogenic in mice, while the comparatively poor immunogenicity of RBD is associated with limiting germinal centre and T follicular helper cell activity. Boosting S-primed mice with either S or RBD significantly augments neutralising titres, with RBD-focussing driving moderate improvement in serum neutralisation. In contrast, both S and RBD vaccines are comparably immunogenic in macaques, eliciting serological neutralising activity that generally exceed levels in convalescent humans. These studies confirm recombinant S proteins as promising vaccine candidates and highlight multiple pathways to achieving potent serological neutralisation.


Assuntos
Vacinas contra COVID-19/uso terapêutico , SARS-CoV-2/patogenicidade , Animais , Anticorpos Neutralizantes/imunologia , Formação de Anticorpos/fisiologia , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Humanos , Macaca , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Linfócitos T Auxiliares-Indutores/imunologia , Linfócitos T Auxiliares-Indutores/metabolismo , Vacinas Virais/uso terapêutico
20.
Nat Commun ; 12(1): 1162, 2021 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-33608522

RESUMO

The durability of infection-induced SARS-CoV-2 immunity has major implications for reinfection and vaccine development. Here, we show a comprehensive profile of antibody, B cell and T cell dynamics over time in a cohort of patients who have recovered from mild-moderate COVID-19. Binding and neutralising antibody responses, together with individual serum clonotypes, decay over the first 4 months post-infection. A similar decline in Spike-specific CD4+ and circulating T follicular helper frequencies occurs. By contrast, S-specific IgG+ memory B cells consistently accumulate over time, eventually comprising a substantial fraction of circulating the memory B cell pool. Modelling of the concomitant immune kinetics predicts maintenance of serological neutralising activity above a titre of 1:40 in 50% of convalescent participants to 74 days, although there is probably additive protection from B cell and T cell immunity. This study indicates that SARS-CoV-2 immunity after infection might be transiently protective at a population level. Therefore, SARS-CoV-2 vaccines might require greater immunogenicity and durability than natural infection to drive long-term protection.


Assuntos
Anticorpos Antivirais/imunologia , Formação de Anticorpos , COVID-19/imunologia , Imunidade Celular , Memória Imunológica , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/sangue , Linfócitos B/imunologia , Linfócitos T CD4-Positivos/imunologia , Humanos , Imunoglobulina G/imunologia , Estudos Longitudinais , Modelos Teóricos , Testes de Neutralização , Linfócitos T Auxiliares-Indutores/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...