Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Ther Methods Clin Dev ; 23: 551-566, 2021 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-34853801

RESUMO

Hemophilia A (HA) is a rare bleeding disorder caused by deficiency/dysfunction of the FVIII protein. As current therapies based on frequent FVIII infusions are not a definitive cure, long-term expression of FVIII in endothelial cells through lentiviral vector (LV)-mediated gene transfer holds the promise of a one-time treatment. Thus, here we sought to determine whether LV-corrected blood outgrowth endothelial cells (BOECs) implanted through a prevascularized medical device (Cell Pouch) would rescue the bleeding phenotype of HA mice. To this end, BOECs from HA patients and healthy donors were isolated, expanded, and transduced with an LV carrying FVIII driven by an endothelial-specific promoter employing GMP-like procedures. FVIII-corrected HA BOECs were either directly transplanted into the peritoneal cavity or injected into a Cell Pouch implanted subcutaneously in NSG-HA mice. In both cases, FVIII secretion was sufficient to improve the mouse bleeding phenotype. Indeed, FVIII-corrected HA BOECs reached a relatively short-term clinically relevant engraftment being detected up to 16 weeks after transplantation, and their genomic integration profile did not show enrichment for oncogenes, confirming the process safety. Overall, this is the first preclinical study showing the safety and feasibility of transplantation of GMP-like produced LV-corrected BOECs within an implantable device for the long-term treatment of HA.

2.
Curr Osteoporos Rep ; 19(1): 1-14, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33393012

RESUMO

PURPOSE OF REVIEW: The treatment of non-union fractures represents a significant challenge for orthopaedic surgeons. In recent years, biologic agents have been investigated and utilised to support and improve bone healing. Among these agents, platelet-rich plasma (PRP) is an emerging strategy that is gaining popularity. The aim of this review is to evaluate the current literature regarding the application and clinical effectiveness of PRP injections, specifically for the treatment of non-union fractures. RECENT FINDINGS: The majority of published studies reported that PRP accelerated fracture healing; however, this evidence was predominantly level IV. The lack of randomised, clinical trials (level I-II evidence) is currently hampering the successful clinical translation of PRP as a therapy for non-union fractures. This is despite the positive reports regarding its potential to heal non-union fractures, when used in isolation or in combination with other forms of treatment. Future recommendations to facilitate clinical translation and acceptance of PRP as a therapy include the need to investigate the effects of administering higher volumes of PRP (i.e. 5-20 mL) along with the requirement for more prolonged (> 11 months) randomised clinical trials.


Assuntos
Consolidação da Fratura/fisiologia , Fraturas não Consolidadas/terapia , Plasma Rico em Plaquetas , Humanos
3.
Int J Mol Sci ; 21(22)2020 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-33203028

RESUMO

Mesenchymal stem cells (MSCs) can differentiate into multiple different tissue lineages and have favourable immunogenic potential making them an attractive prospect for regenerative medicine. As an essential part of the manufacturing process, preservation of these cells whilst maintaining potential is of critical importance. An uncontrolled area of storage remains the rate of change of temperature during freezing and thawing. Controlled-rate freezers attempted to rectify this; however, the change of phase from liquid to solid introduces two extreme phenomena; a rapid rise and a rapid fall in temperature in addition to the intended cooling rate (normally -1 °C/min) as a part of the supercooling event in cryopreservation. Nucleation events are well known to initiate the freezing transition although their active use in the form of ice nucleation devices (IND) are in their infancy in cryopreservation. This study sought to better understand the effects of ice nucleation and its active instigation with the use of an IND in both a standard cryotube with MSCs in suspension and a high-throughput adhered MSC 96-well plate set-up. A potential threshold nucleation temperature for best recovery of dental pulp MSCs may occur around -10 °C and for larger volume cell storage, IND and fast thaw creates the most stable process. For adhered cells, an IND with a slow thaw enables greatest metabolic activity post-thaw. This demonstrates a necessity for a medical grade IND to be used in future regenerative medicine manufacturing with the parameters discussed in this study to create stable products for clinical cellular therapies.


Assuntos
Criopreservação , Crioprotetores/farmacologia , Gelo , Células-Tronco Mesenquimais/metabolismo , Humanos , Células-Tronco Mesenquimais/citologia
4.
Knee Surg Sports Traumatol Arthrosc ; 28(12): 3827-3842, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32006075

RESUMO

PURPOSE: This review aimed to evaluate the efficacy of intra-articular injections of bone marrow derived mesenchymal stem cells (BM-MSCs) for the treatment of knee osteoarthritis (KOA). METHODS: This narrative review evaluates recent English language clinical data and published research articles between 2014 and 2019. Key word search strings of ((("bone marrow-derived mesenchymal stem cell" OR "bone marrow mesenchymal stromal cell" OR "bone marrow stromal cell")) AND ("osteoarthritis" OR "knee osteoarthritis")) AND ("human" OR "clinical"))) AND "intra-articular injection" were used to identify relevant articles using PMC, Cochrane Library, Web Of Science and Scopus databases. RESULTS: Pre-clinical studies have demonstrated successful, safe and encouraging results for articular cartilage repair and regeneration. This is concluded to be due to the multilineage differential potential, immunosuppressive and self-renewal capabilities of BM-MSCs, which have shown to augment pain and improve functional outcomes. Subsequently, clinical applications of intra-articular injections of BM-MSCs are steadily increasing, with most studies demonstrating a decrease in poor cartilage index, improvements in pain, function and Quality of Life (QoL); with moderate-to-high level evidence regarding safety for therapeutic administration. However, low confidence in clinical efficacy remains due to a plethora of heterogenous methodologies utilised, resulting in challenging study comparisons. A moderate number of cells (40 × 106) were identified as most likely to achieve optimal responses in individuals with grade ≥ 2 KOA. Likewise, significant improvements were reported when using lower (24 × 106) and higher (100 × 106) cell numbers, although adverse effects including persistent pain and swelling were a consequence. CONCLUSION: Overall, the benefits of intra-articular injections of BM-MSCs were deemed to outweigh the adverse effects; thus, this treatment be considered as a future therapy strategy. To realise this, long-term large-scale randomised clinical trials are required to enable improved interpretations, to determine the validity of efficacy in future studies. LEVEL OF EVIDENCE: IV.


Assuntos
Cartilagem Articular/fisiologia , Transplante de Células-Tronco Mesenquimais , Osteoartrite do Joelho/terapia , Regeneração , Células da Medula Óssea , Humanos , Injeções Intra-Articulares , Células-Tronco Mesenquimais , Qualidade de Vida , Resultado do Tratamento
5.
Biotechnol J ; 15(1): e1900106, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31468704

RESUMO

In vitro 3D tissue-engineered (TE) structures have been shown to better represent in vivo tissue morphology and biochemical pathways than monolayer culture, and are less ethically questionable than animal models. However, to create systems with even greater relevance, multiple integrated tissue systems should be recreated in vitro. In the present study, the effects and conditions most suitable for the co-culture of TE skeletal muscle and bone are investigated. High-glucose Dulbecco's modified Eagle medium (HG-DMEM) supplemented with 20% fetal bovine serum followed by HG-DMEM with 2% horse serum is found to enable proliferation of both C2C12 muscle precursor cells and TE85 human osteosarcoma cells, fusion of C2C12s into myotubes, as well as an upregulation of RUNX2/CBFa1 in TE85s. Myotube formation is also evident within indirect contact monolayer cultures. Finally, in 3D co-cultures, TE85 collagen/hydroxyapatite constructs have significantly greater expression of RUNX2/CBFa1 and osteocalcin/BGLAP in the presence of collagen-based C2C12 skeletal muscle constructs; however, fusion within these constructs appears reduced. This work demonstrates the first report of the simultaneous co-culture and differentiation of 3D TE skeletal muscle and bone, and represents a significant step toward a full in vitro 3D musculoskeletal junction model.


Assuntos
Osso e Ossos , Técnicas de Cocultura/métodos , Músculo Esquelético , Engenharia Tecidual/métodos , Animais , Osso e Ossos/citologia , Osso e Ossos/metabolismo , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Meios de Cultura/química , Meios de Cultura/farmacologia , Humanos , Camundongos , Músculo Esquelético/citologia , Músculo Esquelético/metabolismo , Mioblastos/citologia , Mioblastos/efeitos dos fármacos , Mioblastos/metabolismo , Osteoblastos/citologia , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo
6.
Biotechnol Bioeng ; 116(9): 2364-2376, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31131874

RESUMO

Three-dimensional tissue-engineered structures enable more representative determination of novel drug or material effects on tissue than traditional monolayer cell cultures. This study sought to better understand how key manufacturing variables affect the myotube characteristics of a skeletal muscle model toward reducing resource use and to develop an understanding of scaling on model consistency. C2C12 murine myoblasts were seeded in a tethered collagen scaffold from which directional myotubes form in response to lines of tension and a change in medium. Collagen polymerizing area length-to-width ratios greater than one were found to reduced cell-matrix attachment and remodeling forces significantly (p < .05) correlating to a reduction in cell fusion potential. Following this, utilizing a factorial design of experiment, 4 million C2C12s/ml, with a polymerizing area width 150% of the anchor point, produced the most favorable myotube characteristics and dramatically reduced the incidence of rupture. Scaled constructs showed no significant differences when compared to larger models. Approximately 20 myotubes with a variation in the alignment of <25° in the central region were consistently observed in the final models. This demonstrates the influence of initial manufacturing variables on tissue formation and has produced a benchmark model for consistent production across scaled constructs for future optimization and as a potential cost-effective preclinical testbed.


Assuntos
Colágeno/química , Fibras Musculares Esqueléticas/metabolismo , Mioblastos Esqueléticos/metabolismo , Engenharia Tecidual , Alicerces Teciduais/química , Animais , Linhagem Celular , Camundongos , Fibras Musculares Esqueléticas/citologia , Mioblastos Esqueléticos/citologia
7.
Cell Tissue Res ; 377(2): 153-159, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30915550

RESUMO

There is a current need for a therapy that can alleviate the social and economic burden that presents itself with debilitating and recurring musculoskeletal soft tissue injuries and disorders. Currently, several therapies are emerging and undergoing trials in animal models; these focus on the manipulation and administration of several growth factors implicated with healing. However, limitations include in vivo instability, reliance on biocompatible and robust carriers and restricted application procedures (local and direct). The aim of this paper is therefore to critically review the current literature surrounding the use of BPC 157, as a feasible therapy for healing and functional restoration of soft tissue damage, with a focus on tendon, ligament and skeletal muscle healing. Currently, all studies investigating BPC 157 have demonstrated consistently positive and prompt healing effects for various injury types, both traumatic and systemic and for a plethora of soft tissues. However, to date, the majority of studies have been performed on small rodent models and the efficacy of BPC 157 is yet to be confirmed in humans. Further, over the past two decades, only a handful of research groups have performed in-depth studies regarding this peptide. Despite this, it is apparent that BPC 157 has huge potential and following further development has promise as a therapy to conservatively treat or aid recovery in hypovascular and hypocellular soft tissues such as tendon and ligaments. Moreover, skeletal muscle injury models have suggested a beneficial effect not only for disturbances that occur as a result of direct trauma but also for systemic insults including hyperkalamia and hypermagnesia. Promisingly, there are few studies reporting any adverse reactions to the administration of BPC 157, although there is still a need to understand the precise healing mechanisms for this therapy to achieve clinical realisation.


Assuntos
Ligamentos , Músculo Esquelético , Fragmentos de Peptídeos/farmacologia , Proteínas/farmacologia , Traumatismos dos Tendões/tratamento farmacológico , Cicatrização/efeitos dos fármacos , Animais , Humanos , Ligamentos/efeitos dos fármacos , Ligamentos/lesões , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/lesões , Fragmentos de Peptídeos/uso terapêutico , Proteínas/uso terapêutico
8.
Cell Tissue Res ; 376(2): 143-152, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30758709

RESUMO

Osteoarthritis (OA) is a degenerative disease involving joint damage, an inadequate healing response and progressive deterioration of the joint architecture that commonly affects the knee and/or hip joints. It is a major world public health problem and is predicted to increase rapidly with an ageing population and escalating rate of obesity. Autologous blood-derived products possess much promise in the repair and regeneration of tissue and have important roles in inflammation, angiogenesis, cell migration and metabolism in pathological conditions, including OA. Utilising platelet-rich plasma (PRP) to treat tendon, ligament and skeletal muscle has shown variable results across many studies with the current evidence base for the efficacy of PRP in treating sports injuries remaining inconclusive. More uniformly positive results have been observed by various studies for PRP in OA knee in comparison to hyaluronic acid, other intra-articular injections and placebo than in other musculoskeletal tissue. However, methodological concerns as well as satisfactory PRP product classification prevent the true characterisation of this treatment. Thus, further research is required to investigate how leukocyte inclusion, activation and platelet concentration affect therapeutic efficacy. Furthermore, the optimisation of timing, dosage, volume, frequency and rehabilitation strategies need to be ascertained. For knee OA management, these concerns must be addressed before this promising treatment can be widely implemented.


Assuntos
Osteoartrite do Joelho/terapia , Plasma Rico em Plaquetas , Humanos , Ácido Hialurônico/administração & dosagem , Injeções Intra-Articulares , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...