Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Biol (Weinh) ; 5(11): e2101026, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34626101

RESUMO

Engineering conductive 3D cell scaffoldings offer advantages toward the creation of physiologically relevant platforms with integrated real-time sensing capabilities. Dopaminergic neural cells are encapsulated into graphene-laden alginate microfibers using a microfluidic approach, which is unmatched for creating highly-tunable microfibers. Incorporating graphene increases the conductivity of the alginate microfibers by 148%, creating a similar conductivity to native brain tissue. The cell encapsulation procedure has an efficiency of 50%, and of those cells, ≈30% remain for the entire 6-day observation period. To understand how the microfluidic encapsulation affects cell genetics, tyrosine hydroxylase, tubulin beta 3 class 3, interleukin 1 beta, and tumor necrosis factor alfa are analyzed primarily with real-time reverse transcription-quantitative polymerase chain reaction and secondarily with enzyme-linked immunosorbent assay, immediately after manufacturing, after encapsulation in polymer matrix for 6 days, and after encapsulation in the graphene-polymer composite for 6 days. Preliminary data shows that the manufacturing process and combination with alginate matrix affect the expression of the studied genes immediately after manufacturing. In addition, the introduction of graphene further changes gene expressions. Long-term encapsulation of neural cells in alginate and 6-day exposure to graphene also leads to changes in gene expressions.


Assuntos
Alginatos , Grafite , Encapsulamento de Células , Hidrogéis , Engenharia Tecidual
2.
Glob Chall ; 4(7): 1900014, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32642072

RESUMO

When a traumatic brain injury (TBI) occurs, low-pressure regions inside the skull can cause vapor contents in the cerebral spinal fluid (CSF) to expand and collapse, a phenomenon known as cavitation. When these microbubbles (MBs) collapse, shock waves are radiated outward and are known to damage surrounding materials in other applications, like the steel foundation of boat propellers, so it is alarming to realize the damage that cavitation inflicts on vulnerable brain tissue. Using cell-laden microfibers, the longitudinal morphological response that mouse astrocytes have to surrounding cavitation in vitro is visually analyzed. Astrocytic damage is evident immediately after cavitation when compared to a control sample, as their processes retract. Forty-eight hours later, the astrocytes appeared to spread across the fibers, as normal. This study also analyzes the gene expression changes that occur post-cavitation via quantitative polymerase chain reaction (qPCR) methods. After cavitation a number of pro-inflammatory genes are upregulated, including TNFα, IL-1ß, C1q, Serping1, NOS1, IL-6, and JMJD3. Taken together, these results confirm that surrounding cavitation is detrimental to astrocytic function, and yield opportunities to further the understanding of how protective headgear can minimize or eliminate the occurrence of cavitation.

3.
Ultrason Sonochem ; 43: 114-119, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29555266

RESUMO

We report a study on two methods that enable spatial control and induced cavitation on targeted microbubbles (MBs). Cavitation is known to be present in many situations throughout nature. This phenomena has been proven to have the energy to erode alloys, like steel, in propellers and turbines. It is recently theorized that cavitation occurs inside the skull during a traumatic-brain injury (TBI) situation. Controlled cavitation methods could help better understand TBIs and explain how neurons respond at moments of trauma. Both of our approaches involve an ultrasonic transducer and bio-compatible Polycaprolactone (PCL) microfibers. These methods are reproducible as well as affordable, providing more control and efficiency compared to previous techniques found in literature. We specifically model three-dimensional spatial control of individual MBs using a 1.6 MHz transducer. Using a 100 kHz transducer, we also illustrate induced cavitation on an individual MB that is adhered to the surface of a PCL microfiber. The goal of future studies will involve characterization of neuronal response to cavitation and seek to unmask its linkage with TBIs.


Assuntos
Materiais Biocompatíveis/química , Lesões Encefálicas Traumáticas/patologia , Microbolhas , Modelos Biológicos , Poliésteres/química , Transdutores , Ondas Ultrassônicas , Humanos , Neurônios/patologia
4.
Macromol Biosci ; 17(12)2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29148617

RESUMO

Microfibers have received much attention due to their promise for creating flexible and highly relevant tissue models for use in biomedical applications such as 3D cell culture, tissue modeling, and clinical treatments. A generated tissue or implanted material should mimic the natural microenvironment in terms of structural and mechanical properties as well as cell adhesion, differentiation, and growth rate. Therefore, the mechanical and biological properties of the fibers are of importance. This paper briefly introduces common fiber fabrication approaches, provides examples of polymers used in biomedical applications, and then reviews the methods applied to modify the mechanical and biological properties of fibers fabricated using different approaches for creating a highly controlled microenvironment for cell culturing. It is shown that microfibers are a highly tunable and versatile tool with great promise for creating 3D cell cultures with specific properties.


Assuntos
Técnicas de Cultura de Células/instrumentação , Técnicas de Cultura de Células/métodos , Nanofibras/química , Polímeros/química , Administração Tópica , Animais , Adesão Celular , Sistemas de Liberação de Medicamentos/métodos , Humanos , Injeções Subcutâneas , Microfluídica/métodos , Polieletrólitos/química , Propriedades de Superfície , Indústria Têxtil/métodos , Alicerces Teciduais/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...