Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Biol Evol ; 36(12): 2764-2777, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31400199

RESUMO

It is incompletely understood how biophysical properties like protein stability impact molecular evolution and epistasis. Epistasis is defined as specific when a mutation exclusively influences the phenotypic effect of another mutation, often at physically interacting residues. In contrast, nonspecific epistasis results when a mutation is influenced by a large number of nonlocal mutations. As most mutations are pleiotropic, the in vivo folding probability-governed by basal protein stability-is thought to determine activity-enhancing mutational tolerance, implying that nonspecific epistasis is dominant. However, evidence exists for both specific and nonspecific epistasis as the prevalent factor, with limited comprehensive data sets to support either claim. Here, we use deep mutational scanning to probe how in vivo enzyme folding probability impacts local fitness landscapes. We computationally designed two different variants of the amidase AmiE with statistically indistinguishable catalytic efficiencies but lower probabilities of folding in vivo compared with wild-type. Local fitness landscapes show slight alterations among variants, with essentially the same global distribution of fitness effects. However, specific epistasis was predominant for the subset of mutations exhibiting positive sign epistasis. These mutations mapped to spatially distinct locations on AmiE near the initial mutation or proximal to the active site. Intriguingly, the majority of specific epistatic mutations were codon dependent, with different synonymous codons resulting in fitness sign reversals. Together, these results offer a nuanced view of how protein folding probability impacts local fitness landscapes and suggest that transcriptional-translational effects are as important as stability in determining evolutionary outcomes.


Assuntos
Amidoidrolases/metabolismo , Aptidão Genética , Modelos Biológicos , Mutação , Dobramento de Proteína , Amidoidrolases/genética
2.
ACS Synth Biol ; 8(3): 474-481, 2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30721031

RESUMO

Enzymes are the ultimate entities responsible for chemical transformations in natural and engineered biosynthetic pathways. However, many natural enzymes suffer from suboptimal functional expression due to poor intrinsic protein stability. Further, stability enhancing mutations often come at the cost of impaired function. Here we demonstrate an automated protein engineering strategy for stabilizing enzymes while retaining catalytic function using deep mutational scanning coupled to multiple-filter based screening and combinatorial mutagenesis. We validated this strategy by improving the functional expression of a Type III polyketide synthase from the Atropa belladonna biosynthetic pathway for tropane alkaloids. The best variant had a total of 8 mutations with over 25-fold improved activity over wild-type in E. coli cell lysates, an improved melting temperature of 11.5 ± 0.6 °C, and only minimal reduction in catalytic efficiency. We show that the multiple-filter approach maintains acceptable sensitivity with homology modeling structures up to 4 Å RMS. Our results highlight an automated protein engineering tool for improving the stability and solubility of difficult to express enzymes, which has impact for biotechnological applications.


Assuntos
Aciltransferases/química , Aciltransferases/genética , Atropa belladonna/enzimologia , Biotecnologia/métodos , Ciência de Dados/métodos , Engenharia de Proteínas/métodos , Aciltransferases/metabolismo , Alcaloides de Belladona/metabolismo , Vias Biossintéticas , Códon sem Sentido , Estabilidade Enzimática/genética , Escherichia coli/metabolismo , Proteínas de Fluorescência Verde/química , Proteínas de Fluorescência Verde/metabolismo , Substâncias Luminescentes/química , Substâncias Luminescentes/metabolismo , Mutagênese , Mutação de Sentido Incorreto , Saccharomyces cerevisiae/metabolismo , Solubilidade , Temperatura de Transição
3.
Nat Commun ; 8: 15695, 2017 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-28585537

RESUMO

Our lack of total understanding of the intricacies of how enzymes behave has constrained our ability to robustly engineer substrate specificity. Furthermore, the mechanisms of natural evolution leading to improved or novel substrate specificities are not wholly defined. Here we generate near-comprehensive single-mutation fitness landscapes comprising >96.3% of all possible single nonsynonymous mutations for hydrolysis activity of an amidase expressed in E. coli with three different substrates. For all three selections, we find that the distribution of beneficial mutations can be described as exponential, supporting a current hypothesis for adaptive molecular evolution. Beneficial mutations in one selection have essentially no correlation with fitness for other selections and are dispersed throughout the protein sequence and structure. Our results further demonstrate the dependence of local fitness landscapes on substrate identity and provide an example of globally distributed sequence-specificity determinants for an enzyme.


Assuntos
Escherichia coli/genética , Evolução Molecular , Aptidão Genética , Mutação , Seleção Genética , Acetamidas/química , Amidas/química , Biblioteca Gênica , Genótipo , Hidrólise , Modelos Genéticos , Mutagênese , Plasmídeos/genética , Sensibilidade e Especificidade , Especificidade por Substrato
4.
Proc Natl Acad Sci U S A ; 114(9): 2265-2270, 2017 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-28196882

RESUMO

Proteins are marginally stable, and an understanding of the sequence determinants for improved protein solubility is highly desired. For enzymes, it is well known that many mutations that increase protein solubility decrease catalytic activity. These competing effects frustrate efforts to design and engineer stable, active enzymes without laborious high-throughput activity screens. To address the trade-off between enzyme solubility and activity, we performed deep mutational scanning using two different screens/selections that purport to gauge protein solubility for two full-length enzymes. We assayed a TEM-1 beta-lactamase variant and levoglucosan kinase (LGK) using yeast surface display (YSD) screening and a twin-arginine translocation pathway selection. We then compared these scans with published experimental fitness landscapes. Results from the YSD screen could explain 37% of the variance in the fitness landscapes for one enzyme. Five percent to 10% of all single missense mutations improve solubility, matching theoretical predictions of global protein stability. For a given solubility-enhancing mutation, the probability that it would retain wild-type fitness was correlated with evolutionary conservation and distance to active site, and anticorrelated with contact number. Hybrid classification models were developed that could predict solubility-enhancing mutations that maintain wild-type fitness with an accuracy of 90%. The downside of using such classification models is the removal of rare mutations that improve both fitness and solubility. To reveal the biophysical basis of enhanced protein solubility and function, we determined the crystallographic structure of one such LGK mutant. Beyond fundamental insights into trade-offs between stability and activity, these results have potential biotechnological applications.


Assuntos
Produtos do Gene tat/química , Ensaios de Triagem em Larga Escala , Fosfotransferases/química , beta-Lactamases/química , Substituição de Aminoácidos , Aspergillus niger/química , Aspergillus niger/enzimologia , Sítios de Ligação , Escherichia coli/química , Escherichia coli/enzimologia , Escherichia coli/genética , Expressão Gênica , Produtos do Gene tat/metabolismo , HIV/química , HIV/metabolismo , Modelos Moleculares , Mutação , Biblioteca de Peptídeos , Fosfotransferases/genética , Fosfotransferases/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Estabilidade Proteica , Transporte Proteico , Solubilidade , Relação Estrutura-Atividade , Técnicas do Sistema de Duplo-Híbrido , beta-Lactamases/genética , beta-Lactamases/metabolismo
5.
Curr Opin Struct Biol ; 45: 36-44, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-27886568

RESUMO

The advent of next-generation sequencing (NGS) has revolutionized protein science, and the development of complementary methods enabling NGS-driven protein engineering have followed. In general, these experiments address the functional consequences of thousands of protein variants in a massively parallel manner using genotype-phenotype linked high-throughput functional screens followed by DNA counting via deep sequencing. We highlight the use of information rich datasets to engineer protein molecular recognition. Examples include the creation of multiple dual-affinity Fabs targeting structurally dissimilar epitopes and engineering of a broad germline-targeted anti-HIV-1 immunogen. Additionally, we highlight the generation of enzyme fitness landscapes for conducting fundamental studies of protein behavior and evolution. We conclude with discussion of technological advances.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala/métodos , Engenharia de Proteínas/métodos , Proteínas/genética , Animais , Mapeamento de Epitopos , Humanos , Proteínas/imunologia
6.
Nat Methods ; 13(11): 928-930, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27723752

RESUMO

Deep mutational scanning is a foundational tool for addressing the functional consequences of large numbers of mutants, but a more efficient and accessible method for construction of user-defined mutagenesis libraries is needed. Here we present nicking mutagenesis, a robust, single-day, one-pot saturation mutagenesis method performed on routinely prepped plasmid dsDNA. The method can be used to produce comprehensive or single- or multi-site saturation mutagenesis libraries.


Assuntos
DNA/genética , Mutagênese Sítio-Dirigida/métodos , Plasmídeos/genética , Amidoidrolases/genética , Quebras de DNA de Cadeia Simples , Enzimas de Restrição do DNA/genética , Escherichia coli/enzimologia , Escherichia coli/genética , Biblioteca Gênica , Genes Bacterianos , Mutação , Pseudomonas aeruginosa/enzimologia , Pseudomonas aeruginosa/genética , Análise de Sequência de DNA , beta-Lactamases/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA