Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Mol Neurosci ; 17: 1429880, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38989157

RESUMO

Long-term memories are not stored in a stable state but must be flexible and dynamic to maintain relevance in response to new information. Existing memories are thought to be updated through the process of reconsolidation, in which memory retrieval initiates destabilization and updating to incorporate new information. Memory updating is impaired in old age, yet little is known about the mechanisms that go awry. One potential mechanism is the repressive histone deacetylase 3 (HDAC3), which is a powerful negative regulator of memory formation that contributes to age-related impairments in memory formation. Here, we tested whether HDAC3 also contributes to age-related impairments in memory updating using the Objects in Updated Locations (OUL) paradigm. We show that blocking HDAC3 immediately after updating with the pharmacological inhibitor RGFP966 ameliorated age-related impairments in memory updating in 18-m.o. male mice. Surprisingly, we found that post-update HDAC3 inhibition in young (3-m.o.) male mice had no effect on memory updating but instead impaired memory for the original information, suggesting that the original and updated information may compete for expression at test and HDAC3 helps regulate which information is expressed. To test this idea, we next assessed whether HDAC3 inhibition would improve memory updating in young male mice given a weak, subthreshold update. Consistent with our hypothesis, we found that HDAC3 blockade strengthened the subthreshold update without impairing memory for the original information, enabling balanced expression of the original and updated information. Together, this research suggests that HDAC3 may contribute to age-related impairments in memory updating and may regulate the strength of a memory update in young mice, shifting the balance between the original and updated information at test.

2.
bioRxiv ; 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38766057

RESUMO

Long-term memories are not stored in a stable state but must be flexible and dynamic to maintain relevance in response to new information. Existing memories are thought to be updated through the process of reconsolidation, in which memory retrieval initiates destabilization and updating to incorporate new information. Memory updating is impaired in old age, yet little is known about the mechanisms that go awry. One potential mechanism is the repressive histone deacetylase 3 (HDAC3), which is a powerful negative regulator of memory formation that contributes to age-related impairments in memory formation. Here, we tested whether HDAC3 also contributes to age-related impairments in memory updating using the Objects in Updated Locations (OUL) paradigm. We show that blocking HDAC3 immediately after updating with the pharmacological inhibitor RGFP966 ameliorated age-related impairments in memory updating in 18-m.o. mice. Surprisingly, we found that post-update HDAC3 inhibition in young (3-m.o.) mice had no effect on memory updating but instead impaired memory for the original information, suggesting that the original and updated information may compete for expression at test and HDAC3 helps regulate which information is expressed. To test this idea, we next assessed whether HDAC3 inhibition would improve memory updating in young mice given a weak, subthreshold update. Consistent with our hypothesis, we found that HDAC3 blockade strengthened the subthreshold update without impairing memory for the original information, enabling balanced expression of the original and updated information. Together, this research suggests that HDAC3 may contribute to age-related impairments in memory updating and may regulate the strength of a memory update in young mice, shifting the balance between the original and updated information at test.

3.
Neuropsychopharmacology ; 48(12): 1789-1797, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37264172

RESUMO

The circadian system influences many different biological processes, including memory performance. While the suprachiasmatic nucleus (SCN) functions as the brain's central pacemaker, downstream "satellite clocks" may also regulate local functions based on the time of day. Within the dorsal hippocampus (DH), for example, local molecular oscillations may contribute to time-of-day effects on memory. Here, we used the hippocampus-dependent Object Location Memory task to determine how memory is regulated across the day/night cycle in mice. First, we systematically determined which phase of memory (acquisition, consolidation, or retrieval) is modulated across the 24 h day. We found that mice show better long-term memory performance during the day than at night, an effect that was specifically attributed to diurnal changes in memory consolidation, as neither memory acquisition nor memory retrieval fluctuated across the day/night cycle. Using RNA-sequencing we identified the circadian clock gene Period1 (Per1) as a key mechanism capable of supporting this diurnal fluctuation in memory consolidation, as learning-induced Per1 oscillates in tandem with memory performance in the hippocampus. We then show that local knockdown of Per1 within the DH impairs spatial memory without affecting either the circadian rhythm or sleep behavior. Thus, Per1 may independently function within the DH to regulate memory in addition to its known role in regulating the circadian system within the SCN. Per1 may therefore exert local diurnal control over memory consolidation within the DH.


Assuntos
Hipocampo , Consolidação da Memória , Animais , Camundongos , Ritmo Circadiano/fisiologia , Hipocampo/metabolismo , Consolidação da Memória/fisiologia , Proteínas Circadianas Period/genética , Memória Espacial , Núcleo Supraquiasmático/metabolismo
4.
Curr Protoc Neurosci ; 91(1): e87, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31985896

RESUMO

In the laboratory, memory is typically studied as a de novo experience, in which a naïve animal is exposed to a discrete learning event that is markedly different from its past experiences. Most real-world memories, however, are updates-modifications or additions-to existing memories. This is particularly true in the aging, experienced brain. To better understand memory updating, we have developed a new behavioral paradigm called the objects in updated locations (OUL) task. OUL relies on hippocampus-dependent spatial learning and has the advantage of being able to test both the original memory and the updated information in a single test session. Further, OUL relies on incidental learning that avoids unnecessary stress that might hinder the performance of aging animals. In OUL, animals first learn the location of two identical objects in a familiar context. This memory is then updated by moving one object to a new location. Finally, to assess the animals' memory for the original and the updated information, all animals are given a test session in which they are exposed to four copies of the object: two in the original training locations, one in the updated location, and one in a novel location. By comparing exploration of the novel location to the familiar locations, we can infer whether the animal remembers the original and updated object locations. OUL is a simple but powerful task that could provide new insights into the cellular, circuit-level, and molecular mechanisms that support memory updating. © 2020 by John Wiley & Sons, Inc.


Assuntos
Memória/fisiologia , Aprendizagem Espacial/fisiologia , Animais , Comportamento Exploratório , Hipocampo/fisiologia , Rememoração Mental , Camundongos , Camundongos Endogâmicos C57BL
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...