Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 10(1): 2857, 2019 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-31253806

RESUMO

The nature of the Verwey transition occurring at TV ≈ 125 K in magnetite (Fe3O4) has been an outstanding problem over many decades. A complex low temperature electronic order was recently discovered and associated structural fluctuations persisting above TV are widely reported, but the origin of the underlying correlations and hence of the Verwey transition remains unclear. Here we show that local structural fluctuations in magnetite emerge below the Curie transition at TC ≈ 850 K, through X-ray pair distribution function analysis. Around 80% of the low temperature correlations emerge in proportion to magnetization below TC. This confirms that fluctuations in Fe-Fe bonding arising from magnetic order are the primary electronic instability and hence the origin of the Verwey transition. Such hidden instabilities may be important to other spin-polarised conductors and orbitally degenerate materials.

2.
Nature ; 481(7380): 173-6, 2011 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-22190035

RESUMO

The mineral magnetite (Fe(3)O(4)) undergoes a complex structural distortion and becomes electrically insulating at temperatures less than 125 kelvin. Verwey proposed in 1939 that this transition is driven by a charge ordering of Fe(2+) and Fe(3+) ions, but the ground state of the low-temperature phase has remained contentious because twinning of crystal domains hampers diffraction studies of the structure. Recent powder diffraction refinements and resonant X-ray studies have led to proposals of a variety of charge-ordered and bond-dimerized ground-state models. Here we report the full low-temperature superstructure of magnetite, determined by high-energy X-ray diffraction from an almost single-domain, 40-micrometre grain, and identify the emergent order. The acentric structure is described by a superposition of 168 atomic displacement waves (frozen phonon modes), all with amplitudes of less than 0.24 ångströms. Distortions of the FeO(6) octahedra show that Verwey's hypothesis is correct to a first approximation and that the charge and Fe(2+) orbital order are consistent with a recent prediction. However, anomalous shortening of some Fe-Fe distances suggests that the localized electrons are distributed over linear three-Fe-site units, which we call 'trimerons'. The charge order and three-site distortions induce substantial off-centre atomic displacements and couple the resulting large electrical polarization to the magnetization. Trimerons may be important quasiparticles in magnetite above the Verwey transition and in other transition metal oxides.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...