Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Chemistry ; 30(29): e202400766, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38483015

RESUMO

A series of isostructural imidonitridophosphates AE2AlP8N15(NH) (AE=Ca, Sr, Ba) was synthesized at high-pressure/high-temperature conditions (1400 °C and 5-9 GPa) from alkaline-earth metal nitrides or azides Ca3N2/Sr(N3)2/Ba(N3)2 and the binary nitrides AlN and P3N5. NH4F served as a hydrogen source and mineralizing agent. The crystal structures were determined by single-crystal X-ray diffraction and feature a three-dimensional network of vertex-sharing PN4-tetrahedra forming diverse-sized rings that are occupied by aluminum and alkaline earth ions. These structures represent another example of nitridophosphate-based networks that simultaneously incorporate AlN6-octahedra and alkaline-earth-centered polyhedra, with aluminum not participating in the tetrahedra network. They differ from previously reported ones by incorporating non-condensed octahedra instead of strongly condensed octahedra units and contribute to the diversity of multicationic nitridophosphate network structures. The results are supported by atomic resolution EDX mapping, solid-state NMR and FTIR measurements. Eu2+-doped samples show strong luminescence with narrow emissions in the range of green to blue under UV excitation, marking another instance of Eu2+-luminescence within imidonitridophosphates.

2.
Angew Chem Int Ed Engl ; 63(14): e202401421, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38361110

RESUMO

The first nitridic analog of an amphibole mineral, the quaternary nitridosilicate phosphate Cr5.7Si2.3P8N24 was synthesized under high-pressure high-temperature conditions at 1400 °C and 12 GPa from the binary nitrides Cr2N, Si3N4 and P3N5, using NH4N3 and NH4F as additional nitrogen source and mineralizing agent, respectively. The crystal structure was elucidated by single-crystal X-ray diffraction with microfocused synchrotron radiation (C2/m, a=9.6002(19), b=17.107(3), c=4.8530(10) Å, ß=109.65(3)°). The elemental composition was analyzed by energy dispersive X-ray spectroscopy. The structure consists of vertex-sharing PN4-tetrahedra forming zweier double chains and edge-sharing (Si,Cr)-centered octahedra forming separated ribbons. Atomic resolution scanning transmission electron microscopy shows ordered Si and Cr sites next to a disordered Si/Cr site. Optical spectroscopy indicates a band gap of 2.1 eV. Susceptibility measurements show paramagnetic behavior and support the oxidation state Cr+IV, which is confirmed by EPR. The comprehensive analysis expands the field of Cr-N chemistry and provides access to a nitride analog of one of the most prevalent silicate structures.

3.
J Appl Crystallogr ; 56(Pt 3): 660-672, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37284277

RESUMO

The mechanism of hydration of calcium sulfate hemihydrate (CaSO4·0.5H2O) to form gypsum (CaSO4·2H2O) was studied by combining scanning 3D X-ray diffraction (s3DXRD) and phase contrast tomography (PCT) to determine in situ the spatial and crystallographic relationship between these two phases. From s3DXRD measurements, the crystallographic structure, orientation and position of the crystalline grains in the sample during the hydration reaction were obtained, while the PCT reconstructions allowed visualization of the 3D shapes of the crystals during the reaction. This multi-scale study unfolds structural and morphological evidence of the dissolution-precipitation process of the gypsum plaster system, providing insights into the reactivity of specific crystallographic facets of the hemihydrate. In this work, epitaxial growth of gypsum crystals on the hemihydrate grains was not observed.

4.
IUCrJ ; 10(Pt 4): 397-410, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37199503

RESUMO

Erionite is a non-asbestos fibrous zeolite classified by the International Agency for Research on Cancer (IARC) as a Group 1 carcinogen and is considered today similar to or even more carcinogenic than the six regulated asbestos minerals. Exposure to fibrous erionite has been unequivocally linked to cases of malignant mesothelioma (MM) and this killer fibre is assumed to be directly responsible for more than 50% of all deaths in the population of the villages of Karain and Tuzköy in central Anatolia (Turkey). Erionite usually occurs in bundles of thin fibres and very rarely as single acicular or needle-like fibres. For this reason, a crystal structure of this fibre has not been attempted to date although an accurate characterization of its crystal structure is of paramount importance for our understanding of the toxicity and carcinogenicity. In this work, we report on a combined approach of microscopic (SEM, TEM, electron diffraction), spectroscopic (micro-Raman) and chemical techniques with synchrotron nano-single-crystal diffraction that allowed us to obtain the first reliable ab initio crystal structure of this killer zeolite. The refined structure showed regular T-O distances (in the range 1.61-1.65 Å) and extra-framework content in line with the chemical formula (K2.63Ca1.57Mg0.76Na0.13Ba0.01)[Si28.62Al7.35]O72·28.3H2O. The synchrotron nano-diffraction data combined with three-dimensional electron diffraction (3DED) allowed us to unequivocally rule out the presence of offretite. These results are of paramount importance for understanding the mechanisms by which erionite induces toxic damage and for confirming the physical similarities with asbestos fibres.


Assuntos
Amianto , Mesotelioma , Zeolitas , Humanos , Zeolitas/análise , Mesotelioma/epidemiologia , Turquia/epidemiologia , Exposição Ambiental , Carcinógenos
5.
J Synchrotron Radiat ; 28(Pt 5): 1377-1385, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34475286

RESUMO

The high levels of flux available at a fourth-generation synchrotron are shown to have significant beam heating effects for high-energy X-rays and radiation hard samples, leading to temperature increases of over 400 K with a monochromatic beam. These effects have been investigated at the ID11 beamline at the recently upgraded ESRF Extremely Brilliant Source, using thermal lattice expansion to perform in situ measurements of beam heating. Results showed significant increases in temperature for metal and ceria samples, which are compared with a lumped thermodynamic model, providing a tool for estimating beam heating effects. These temperature increases may have a drastic effect on samples and measurements, such as the rapid recrystallization of a copper wire shown here. These results demonstrate the importance of beam heating and provide information needed to consider, predict and mitigate these effects.

6.
Chemistry ; 27(57): 14217-14224, 2021 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-34459046

RESUMO

Multi-anvil and laser-heated diamond anvil methods have been used to subject Ge and Si mixtures to pressures and temperatures of between 12 and 17 GPa and 1500-1800 K, respectively. Synchrotron angle dispersive X-ray diffraction, precession electron diffraction and chemical analysis using electron microscopy, reveal recovery at ambient pressure of hexagonal Ge-Si solid solutions (P63 /mmc). Taken together, the multi-anvil and diamond anvil results reveal that hexagonal solid solutions can be prepared for all Ge-Si compositions. This hexagonal class of solid solutions constitutes a significant expansion of the bulk Ge-Si solid solution family, and is of interest for optoelectronic applications.

7.
J Appl Crystallogr ; 53(Pt 2): 314-325, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-32280319

RESUMO

Two methods for reconstructing intragranular strain fields are developed for scanning three-dimensional X-ray diffraction (3DXRD). The methods are compared with a third approach where voxels are reconstructed independently of their neighbours [Hayashi, Setoyama & Seno (2017). Mater. Sci. Forum, 905, 157-164]. The 3D strain field of a tin grain, located within a sample of approximately 70 grains, is analysed and compared across reconstruction methods. Implicit assumptions of sub-problem independence, made in the independent voxel reconstruction method, are demonstrated to introduce bias and reduce reconstruction accuracy. It is verified that the two proposed methods remedy these problems by taking the spatial properties of the inverse problem into account. Improvements in reconstruction quality achieved by the two proposed methods are further supported by reconstructions using synthetic diffraction data.

8.
Chemistry ; 26(32): 7292-7298, 2020 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-32267576

RESUMO

The nitridophosphates AEP8 N14 (AE=Ca, Sr, Ba) were synthesized at 4-5 GPa and 1050-1150 °C applying a 1000 t press with multianvil apparatus, following the azide route. The crystal structures of CaP8 N14 and SrP8 N14 are isotypic. The space group Cmcm was confirmed by powder X-ray diffraction. The structure of BaP8 N14 (space group Amm2) was elucidated by a combination of transmission electron microscopy and diffraction of microfocused synchrotron radiation. Phase purity was confirmed by Rietveld refinement. IR spectra are consistent with the structure models and the chemical compositions were confirmed by X-ray spectroscopy. Luminescence properties of Eu2+ -doped samples were investigated upon excitation with UV to blue light. CaP8 N14 (λem =470 nm; fwhm=1380 cm-1 ) and SrP8 N14 (λem =440 nm; fwhm=1350 cm-1 ) can be classified as the first ultra-narrow-band blue-emitting Eu2+ -doped nitridophosphates. BaP8 N14 shows a notably broader blue emission (λem =417/457 nm; fwhm=2075/3550 cm-1 ).

9.
Chemistry ; 26(22): 5010-5016, 2020 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-31944443

RESUMO

Barium imidonitridophosphate BaP6 N10 NH was synthesized at 5 GPa and 1000 °C with a high-pressure high-temperature approach using the multianvil technique. Ba(N3 )2 , P3 N5 and NH4 Cl were used as starting materials, applying a combination of azide and mineralizer routes. The structure elucidation of BaP6 N10 NH (P63 , a=7.5633(11), c=8.512(2) Å, Z=2) was performed by a combination of transmission electron microscopy and single-crystal diffraction with microfocused synchrotron radiation. Phase purity was verified by Rietveld refinement. 1 H and 31 P solid-state NMR and FTIR spectroscopy are consistent with the structure model. The chemical composition was confirmed by energy-dispersive X-ray spectroscopy and CHNS analyses. Eu2+ -doped samples of BaP6 N10 NH show blue emission upon excitation with UV to blue light (λem =460 nm, fwhm=2423 cm-1 ) representing unprecedented Eu2+ -luminescence of an imidonitride.

10.
Materials (Basel) ; 12(3)2019 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-30709058

RESUMO

The 3D microstructure around a tin whisker, and its evolution during heat treatment were studied using scanning 3DXRD. The shape of each grain in the sample was reconstructed using a filtered-back-projection algorithm. The local lattice parameters and grain orientations could then be refined, using forward modelling of the diffraction data, with a spatial resolution of 250 n m . It was found that the tin coating had a texture where grains were oriented such that their c-axes were predominantly parallel to the sample surface. Grains with other orientations were consumed by grain growth during the heat treatment. Most of the grain boundaries were found to have misorientations larger than 15 ∘ , and many coincidence site lattice (CSL) or other types of low-energy grain boundaries were identified. None of the grains with CSL grain boundaries were consumed by grain growth. During the heat treatment, growth of preexisting Cu6Sn5 occurred; these grains were indexed as a hexagonal η phase, which is usually documented to be stable only at temperatures exceeding 186 ∘ C . This indicates that the η phase can exist in a metastable state for long periods. The tin coating was found to be under compressive hydrostatic stress, with a negative gradient in hydrostatic stress extending outwards from the root of the whisker. Negative stress gradients are generally believed to play an essential role in providing the driving force for diffusion of material to the whisker root.

11.
Angew Chem Int Ed Engl ; 58(5): 1432-1436, 2019 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-30536686

RESUMO

Due to the weak oxidative force of N2 , nitrides are only typically formed with the less electronegative metals. Meeting this challenge, we here present Pb2 Si5 N8 , the first nitridosilicate containing highly electron-affine cations of a metal from the right side of the Zintl border. By using advanced synchrotron X-ray diffraction, the crystal structure was determined from a tiny single crystal of 1×3×3 µm3 in size, revealing a significantly different bonding situation compared to all other nitridosilicates known so far. Indeed, DFT calculations confirm distinct amounts of covalency not only between Pb and N but also between formal Pb2+ cations. Thus, unprecedented cationic Pb2 dumbbells with a stretching vibration at 117 cm-1 were found in Pb2 Si5 N8 , the first representative of a crystallographically elucidated lead nitride, stabilized by high amounts of covalency.

12.
Inorg Chem ; 57(21): 13840-13846, 2018 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-30351090

RESUMO

The oxonitridocarbidosilicates RE4Ba2[Si12O2N16C3]:Eu2+ ( RE = Lu, Y) were synthesized by carbothermal reactions starting from RE2O3, graphite, Ba2Si5N8, Si(NH)2, and Eu2O3. The crystal structure of Lu4Ba2[Si12O2N16C3]:Eu2+ was elucidated on a submicron-sized single crystal by a combination of transmission electron microscopy and microfocused synchrotron radiation. The compound crystallizes in trigonal space group P3 (no. 143) with a = 16.297(4) Å, c = 6.001(2) Å, and Z = 3 ( R1 = 0.0332, wR2 = 0.0834, GoF = 1.034). According to Rietveld refinements on powder X-ray diffraction data, Y4Ba2[Si12O2N16C3]:Eu2+ is isotypic with a = 16.41190(6) Å and c = 6.03909(3) Å. The crystal structures are built up of vertex-sharing SiC(O/N)3 tetrahedra forming star-shaped units [C[4](Si(O/N)3)4] with carbon atoms in fourfold bridging positions. Energy-dispersive X-ray spectroscopy and CHNS analysis correspond to the sum formula, lattice energy, and charge distribution calculations support the assignment of O/N/C atoms. When excited with UV to blue light, Eu2+-doped samples show green luminescence for RE = Lu (λem ≈ 538 nm, full width at half-maximum (fwhm) ≈ 3600 cm-1) and yellow emission in the case of RE = Y (λem ≈ 556 nm, fwhm ≈ 4085 cm-1).

13.
J Phys Chem Lett ; 7(17): 3388-94, 2016 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-27516071

RESUMO

Intense interest in the Li-O2 battery system over the past 5 years has led to a much better understanding of the various chemical processes involved in the functioning of this battery system. However, detailed decomposition of the nanostructured Li2O2 product, held at least partially responsible for the limited reversibility and poor rate performance, is hard to measure operando under realistic electrochemical conditions. Here, we report operando nanobeam X-ray diffraction experiments that enable monitoring of the decomposition of individual Li2O2 grains in a working Li-O2 battery. Platelet-shaped crystallites with aspect ratios between 2.2 and 5.5 decompose preferentially via the more reactive (001) facets. The slow and concurrent decomposition of individual Li2O2 crystallites indicates that the Li2O2 decomposition rate limits the charge time of these Li-O2 batteries, highlighting the importance of using redox mediators in solution to charge Li-O2 batteries.

14.
Angew Chem Int Ed Engl ; 54(50): 15109-12, 2015 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-26509919

RESUMO

Alloy and nitride solid solutions are prominent for structural, energy and information processing applications. There are frequently however barriers to making them. We remove barriers to reactivity here using pressure with a new synthetic approach. We target pressures where the reasons for cubic endmember nitride instability can become the driving force for cubic nitride solid solution stability. Using this approach we form a novel rocksalt Mg0.4 Fe0.6 N solid solution at between 15 and 23 GPa and up to 2500 K. This is a system where, neither an alloy nor a nitride solid solution form at ambient conditions and bulk MgN and FeN endmembers do not form, either at ambient or at high pressure. The new nitride is formed, by removing endmember lattice mismatch with pressure, allowing a stabilizing redistribution of valence electrons upon heating. This approach can be employed for a range of normally unreactive systems. Mg, Fe and enhanced nitrogen presence, may also indicate a richer reaction chemistry in our planets interior.

15.
Nat Commun ; 6: 8333, 2015 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-26395323

RESUMO

Phase transitions in Li-ion electrode materials during (dis)charge are decisive for battery performance, limiting high-rate capabilities and playing a crucial role in the cycle life of Li-ion batteries. However, the difficulty to probe the phase nucleation and growth in individual grains is hindering fundamental understanding and progress. Here we use synchrotron microbeam diffraction to disclose the cycling rate-dependent phase transition mechanism within individual particles of LiFePO4, a key Li-ion electrode material. At low (dis)charge rates well-defined nanometer thin plate-shaped domains co-exist and transform much slower and concurrent as compared with the commonly assumed mosaic transformation mechanism. As the (dis)charge rate increases phase boundaries become diffuse speeding up the transformation rates of individual grains. Direct observation of the transformation of individual grains reveals that local current densities significantly differ from what has previously been assumed, giving new insights in the working of Li-ion battery electrodes and their potential improvements.

16.
Angew Chem Int Ed Engl ; 54(34): 10020-3, 2015 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-26214000

RESUMO

The structure elucidation of the novel sulfide telluride Pb8Sb8S15Te5 demonstrates a new versatile procedure that exploits the synergism of electron microscopy and synchrotron diffraction methods for accurate structure analyses of side-phases in heterogeneous microcrystalline samples. Suitable crystallites of unknown compounds can be identified by transmission electron microscopy and relocated and centered in a microfocused synchrotron beam by means of X-ray fluorescence scans. The refined structure model is then confirmed by simulating HRTEM images of the same crystallite. Pb8Sb8S15Te5 consists of chains of heterocubane-like units. Cation coordination polyhedra form unusually entwined chains of edge- and face-sharing bicapped trigonal prisms. The structure data are precise enough for bond-valence calculations, which confirm the disordered atom distribution. On this basis, optimization of physical properties becomes feasible.

17.
J Appl Crystallogr ; 48(Pt 2): 510-519, 2015 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-25844080

RESUMO

pyFAI is an open-source software package designed to perform azimuthal integration and, correspondingly, two-dimensional regrouping on area-detector frames for small- and wide-angle X-ray scattering experiments. It is written in Python (with binary submodules for improved performance), a language widely accepted and used by the scientific community today, which enables users to easily incorporate the pyFAI library into their processing pipeline. This article focuses on recent work, especially the ease of calibration, its accuracy and the execution speed for integration.

18.
IUCrJ ; 2(Pt 1): 3-4, 2015 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-25610620

RESUMO

Serial crystallography should be possible with a much wider range of radiation sources as Ayyer et al. [IUCrJ (2015), 2, 29-34] show that crystallographic intensities can be recovered from randomly oriented frames which are too sparse for indexing.

19.
Inorg Chem ; 53(11): 5656-62, 2014 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-24824209

RESUMO

High-pressure and -temperature experiments on Ge and Si mixtures to 17 GPa and 1500 K allow us to obtain extended Ge-Si solid solutions with cubic (Ia3) and tetragonal (P4(3)2(1)2) crystal symmetries at ambient pressure. The cubic modification can be obtained with up to 77 atom % Ge and the tetragonal modification for Ge concentrations above that. Together with Hume-Rothery criteria, melting point convergence is employed here as a favored attribute for solid solution formation. These compositionally tunable alloys are of growing interest for advanced transport and optoelectronic applications. Furthermore, the work illustrates the significance of employing precession electron diffraction for mapping new materials landscapes resulting from tailored high-pressure and -temperature syntheses.

20.
Nano Lett ; 14(5): 2279-85, 2014 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-24707878

RESUMO

The impact of ultrahigh (dis)charge rates on the phase transition mechanism in LiFePO4 Li-ion electrodes is revealed by in situ synchrotron diffraction. At high rates the solubility limits in both phases increase dramatically, causing a fraction of the electrode to bypass the first-order phase transition. The small transforming fraction demonstrates that nucleation rates are consequently not limiting the transformation rate. In combination with the small fraction of the electrode that transforms at high rates, this indicates that higher performances may be achieved by further optimizing the ionic/electronic transport in LiFePO4 electrodes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...