Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Clin. transl. oncol. (Print) ; 24(1): 127-144, enero 2022. ilus, graf
Artigo em Inglês | IBECS | ID: ibc-203421

RESUMO

Metaplastic breast carcinoma (MBC) is a rare breast cancer subtype with rapid growth, high rates of metastasis, recurrence and drug resistance, and diverse molecular and histological heterogeneity. Patient-derived xenografts (PDXs) provide a translational tool and physiologically relevant system to evaluate tumor biology of rare subtypes. Here, we provide an in-depth comprehensive characterization of a new PDX model for MBC, TU-BcX-4IC. TU-BcX-4IC is a clinically aggressive tumor exhibiting rapid growth in vivo, spontaneous metastases, and elevated levels of cell-free DNA and circulating tumor cell DNA. Relative chemosensitivity of primary cells derived from TU-BcX-4IC was performed using the National Cancer Institute (NCI) oncology drug set, crystal violet staining, and cytotoxic live/dead immunofluorescence stains in adherent and organoid culture conditions. We employed novel spheroid/organoid incubation methods (Pu·MA system) to demonstrate that TU-BcX-4IC is resistant to paclitaxel. An innovative physiologically relevant system using human adipose tissue was used to evaluate presence of cancer stem cell-like populations ex vivo. Tissue decellularization, cryogenic-scanning electron microscopy imaging and rheometry revealed consistent matrix architecture and stiffness were consistent despite serial transplantation. Matrix-associated gene pathways were essentially unchanged with serial passages, as determined by qPCR and RNA sequencing, suggesting utility of decellularized PDXs for in vitro screens. We determined type V collagen to be present throughout all serial passage of TU-BcX-4IC tumor, suggesting it is required for tumor maintenance and is a potential viable target for MBC. In this study we introduce an innovative and translational model system to study cell–matrix interactions in rare cancer types using higher passage PDX tissue.


Assuntos
Humanos , Ciências da Saúde , Neoplasias da Mama , Xenoenxertos , Metástase Neoplásica , Matriz Extracelular , Resistência a Medicamentos/efeitos dos fármacos , Colágeno
2.
Clin Transl Oncol ; 24(1): 127-144, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34370182

RESUMO

Metaplastic breast carcinoma (MBC) is a rare breast cancer subtype with rapid growth, high rates of metastasis, recurrence and drug resistance, and diverse molecular and histological heterogeneity. Patient-derived xenografts (PDXs) provide a translational tool and physiologically relevant system to evaluate tumor biology of rare subtypes. Here, we provide an in-depth comprehensive characterization of a new PDX model for MBC, TU-BcX-4IC. TU-BcX-4IC is a clinically aggressive tumor exhibiting rapid growth in vivo, spontaneous metastases, and elevated levels of cell-free DNA and circulating tumor cell DNA. Relative chemosensitivity of primary cells derived from TU-BcX-4IC was performed using the National Cancer Institute (NCI) oncology drug set, crystal violet staining, and cytotoxic live/dead immunofluorescence stains in adherent and organoid culture conditions. We employed novel spheroid/organoid incubation methods (Pu·MA system) to demonstrate that TU-BcX-4IC is resistant to paclitaxel. An innovative physiologically relevant system using human adipose tissue was used to evaluate presence of cancer stem cell-like populations ex vivo. Tissue decellularization, cryogenic-scanning electron microscopy imaging and rheometry revealed consistent matrix architecture and stiffness were consistent despite serial transplantation. Matrix-associated gene pathways were essentially unchanged with serial passages, as determined by qPCR and RNA sequencing, suggesting utility of decellularized PDXs for in vitro screens. We determined type V collagen to be present throughout all serial passage of TU-BcX-4IC tumor, suggesting it is required for tumor maintenance and is a potential viable target for MBC. In this study we introduce an innovative and translational model system to study cell-matrix interactions in rare cancer types using higher passage PDX tissue.


Assuntos
Antineoplásicos/uso terapêutico , Modelos Biológicos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/patologia , Animais , Modelos Animais de Doenças , Xenoenxertos , Humanos , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Arch Insect Biochem Physiol ; 50(2): 62-74, 2002 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12173291

RESUMO

Selected compounds were used to study physiological processes associated with digestion in the western tarnished plant bug, Lygus hesperus Knight. Durations of passage and rates of absorption, digestion, and excretion were determined for a digestible protein (casein), a non-digestible protein (green fluorescent protein, GFP), and a non-digestible carbohydrate (dextran). Dextran was used as a control to monitor the non-absorptive flow rate of ingesta through the digestive system. Fluorescent tracking of FITC-conjugates of casein and dextran, as well as immunoblotting and immunofluorescent staining of casein and GFP, were used to monitor the degradation (in vitro) and ingestion, digestion, and distribution (in vivo) of the respective compounds. Under our experimental conditions, L. hesperus took discrete meals, feeding and excreting at 2-3 h intervals. Rate of food passage was variable. FITC-dextran was found in the fecal material of most insects by 6-8 h after treatment initiation; by 12 h, 95% of ingested FITC-dextran was recovered from all insects. FITC-casein was digested extensively in in vitro homogenates of gut, hemolymph, and salivary gland. In vivo, FITC-casein was ingested and partially absorbed as a holoprotein into the hemolymph. Ingested FITC-casein was partially degraded in the gut and hemolymph within 2 h of ingestion, and no holoprotein was found after 12 h. In contrast, there was no detectable degradation of GFP in hemolymph, gut, and salivary gland homogenates after 24 h of incubation. Ingested GFP was not degraded in gut or hemolymph up to 8 h after treatment initiation, but did transfer to the hemolymph as a holoprotein. Analysis of immunohistological images confirmed that GFP bound to gut epithelial cell brush-border membranes. However, the mechanism by which GFP and casein pass as holoproteins into the hemolymph remains unknown.


Assuntos
Caseínas/metabolismo , Hemípteros/metabolismo , Proteínas Luminescentes/metabolismo , Animais , Dextranos/metabolismo , Sistema Digestório/metabolismo , Fezes/química , Feminino , Proteínas de Fluorescência Verde
5.
Nature ; 236(5341): 81-2, 1972 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-4553459
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...