Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Tree Physiol ; 32(3): 280-93, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22367763

RESUMO

While edge effects on tree water relations are well described for closed forests, they remain under-examined in more open forest types. Similarly, there has been minimal evaluation of the effects of contrasting land uses on the water relations of open forest types in highly fragmented landscapes. We examined edge effects on the water relations and gas exchange of a dominant tree (Eucalyptus arenacea Marginson & Ladiges) in an open forest type (temperate woodland) of south-eastern Australia. Edge effects in replicate woodlands adjoined by cleared agricultural land (pasture edges) were compared with those adjoined by 7- to 9-year-old eucalypt plantation with a 25m fire break (plantation edges). Consistent with studies in closed forest types, edge effects were pronounced at pasture edges where photosynthesis, transpiration and stomatal conductance were greater for edge trees than interior trees (75m into woodlands), and were related to greater light availability and significantly higher branch water potentials at woodland edges than interiors. Nonetheless, gas exchange values were only ∼50% greater for edge than interior trees, compared with ∼200% previously found in closed forest types. In contrast to woodlands adjoined by pasture, gas exchange in winter was significantly lower for edge than interior trees in woodlands adjoined by plantations, consistent with shading and buffering effects of plantations on edge microclimate. Plantation edge effects were less pronounced in summer, although higher water use efficiency of edge than interior woodland trees indicated possible competition for water between plantation trees and woodland edge trees in the drier months (an effect that might have been more pronounced were there no firebreak between the two land uses). Scaling up of leaf-level water relations to stand transpiration using a Jarvis-type phenomenological model indicated similar differences between edge types. That is, transpiration was greater at pasture than plantation edges in summer months (most likely due to greater water availability at pasture edges), resulting in significantly greater estimates of annual transpiration at pasture than plantation edges (430 vs. 343lm(-2)year(-1), respectively). Our study highlights the need for landscape-level water flux models to account for edge effects on stand transpiration, particularly in highly fragmented landscapes.


Assuntos
Eucalyptus/fisiologia , Estômatos de Plantas/fisiologia , Transpiração Vegetal/fisiologia , Água/fisiologia , Luz , Microclima , Modelos Biológicos , Fotossíntese/fisiologia , Folhas de Planta/fisiologia , Estações do Ano , Árvores/fisiologia , Vitória
2.
Tree Physiol ; 31(10): 1041-51, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21908853

RESUMO

Knowledge about nocturnal transpiration (E(night)) of trees is increasing and its impact on regional water and carbon balance has been recognized. Most of this knowledge has been generated in temperate or equatorial regions. Yet, little is known about E(night) and tree water use (Q) in semi-arid regions. We investigated the influence of atmospheric conditions on daytime (Q(day)) and nighttime water transport (Q(night)) of Eucalyptus victrix L.A.S. Johnson & K.D. Hill growing over shallow groundwater (not >1.5 m in depth) in semi-arid tropical Australia. We recorded Q(day) and Q(night) at different tree heights in conjunction with measurements of stomatal conductance (g(s)) and partitioned E(night) from refilling processes. Q of average-sized trees (200-400 mm diameter) was 1000-3000 l month(-1), but increased exponentially with diameter such that large trees (>500 mm diameter) used up to 8000 l month(-1). Q was remarkably stable across seasons. Water flux densities (J(s)) varied significantly at different tree heights during day and night. We show that g(s) remained significantly different from zero and E(night) was always greater than zero due to vapor pressure deficits (D) that remained >1.5 kPa at night throughout the year. Q(night) reached a maximum of 50% of Q(day) and was >0.03 mm h(-1) averaged across seasons. Refilling began during afternoon hours and continued well into the night. Q(night) eventually stabilized and closely tracked D(night). Coupling of Q(night) and D(night) was particularly strong during the wet season (R2 = 0.95). We suggest that these trees have developed the capacity to withstand a pronounced desiccation-rehydration cycle in a semi-arid environment. Such a cycle has important implications for local and regional hydrological budgets of semi-arid landscapes, as large nighttime water fluxes must be included in any accounting.


Assuntos
Ritmo Circadiano , Eucalyptus/fisiologia , Transpiração Vegetal , Água/fisiologia , Desidratação , Dessecação , Ecossistema , Estações do Ano , Austrália Ocidental
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA