Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 12(1): 6881, 2021 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-34824232

RESUMO

Over the past two decades, multidisciplinary studies have unearthed a rich history of volcanic activity and unrest in the densely-populated East African Rift System, providing new insights into the influence of rift dynamics on magmatism, the characteristics of the volcanic plumbing systems and the foundation for hazard assessments. The raised awareness of volcanic hazards is driving a shift from crisis response to reducing disaster risks, but a lack of institutional and human capacity in sub-Saharan Africa means baseline data are sparse and mitigating geohazards remains challenging.

3.
Nat Commun ; 11(1): 2403, 2020 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-32415105

RESUMO

Large volume effusive eruptions with relatively minor observed precursory signals are at odds with widely used models to interpret volcano deformation. Here we propose a new modelling framework that resolves this discrepancy by accounting for magma buoyancy, viscoelastic crustal properties, and sustained magma channels. At low magma accumulation rates, the stability of deep magma bodies is governed by the magma-host rock density contrast and the magma body thickness. During eruptions, inelastic processes including magma mush erosion and thermal effects, can form a sustained channel that supports magma flow, driven by the pressure difference between the magma body and surface vents. At failure onset, it may be difficult to forecast the final eruption volume; pressure in a magma body may drop well below the lithostatic load, create under-pressure and initiate a caldera collapse, despite only modest precursors.

4.
Sci Adv ; 5(12): eaax6720, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32064315

RESUMO

Deformation associated with plate convergence at subduction zones is accommodated by a complex system involving fault slip and viscoelastic flow. These processes have proven difficult to disentangle. The 2010 M w 8.8 Maule earthquake occurred close to the Chilean coast within a dense network of continuously recording Global Positioning System stations, which provide a comprehensive history of surface strain. We use these data to assemble a detailed picture of a structurally controlled megathrust fault frictional patchwork and the three-dimensional rheological and time-dependent viscosity structure of the lower crust and upper mantle, all of which control the relative importance of afterslip and viscoelastic relaxation during postseismic deformation. These results enhance our understanding of subduction dynamics including the interplay of localized and distributed deformation during the subduction zone earthquake cycle.

5.
Nat Commun ; 9(1): 1392, 2018 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-29643366

RESUMO

Earthquakes are caused by the release of tectonic strain accumulated between events. Recent advances in satellite geodesy mean we can now measure this interseismic strain accumulation with a high degree of accuracy. But it remains unclear how to interpret short-term geodetic observations, measured over decades, when estimating the seismic hazard of faults accumulating strain over centuries. Here, we show that strain accumulation rates calculated from geodetic measurements around a major transform fault are constant for its entire 250-year interseismic period, except in the ~10 years following an earthquake. The shear strain rate history requires a weak fault zone embedded within a strong lower crust with viscosity greater than ~1020 Pa s. The results support the notion that short-term geodetic observations can directly contribute to long-term seismic hazard assessment and suggest that lower-crustal viscosities derived from postseismic studies are not representative of the lower crust at all spatial and temporal scales.

6.
Science ; 356(6334)2017 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-28336563

RESUMO

On 14 November 2016, northeastern South Island of New Zealand was struck by a major moment magnitude (Mw) 7.8 earthquake. Field observations, in conjunction with interferometric synthetic aperture radar, Global Positioning System, and seismology data, reveal this to be one of the most complex earthquakes ever recorded. The rupture propagated northward for more than 170 kilometers along both mapped and unmapped faults before continuing offshore at the island's northeastern extent. Geodetic and field observations reveal surface ruptures along at least 12 major faults, including possible slip along the southern Hikurangi subduction interface; extensive uplift along much of the coastline; and widespread anelastic deformation, including the ~8-meter uplift of a fault-bounded block. This complex earthquake defies many conventional assumptions about the degree to which earthquake ruptures are controlled by fault segmentation and should motivate reevaluation of these issues in seismic hazard models.

7.
Nat Commun ; 4: 1416, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23361007

RESUMO

As continental rift zones mature the tectonic and volcanic processes associated with crustal extension become confined to narrow magmatic rift zones, reminiscent of oceanic spreading ridges. The formation of these rift zones and the development of ocean-ridge type topography is a significant milestone in rift evolution as it signifies the localization of crustal extension and rift-related volcanism. Here we show that lavas, which erupted since ~200 ka along part of the on-land Red Sea rift system in Afar, Ethiopia, have a consistent age-progression from the rift axis outwards, indicating that axial dyke intrusion has been the primary mechanism of segment growth and that focused magmatic accretion and extension in the crust have remained stable here over this period. Our results suggest that as this rift segment has formed, in thinned and intruded continental crust, the time-averaged surface opening rate has closely approximated the total extension rate between Africa and Arabia.

8.
Nature ; 442(7100): 291-4, 2006 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-16855588

RESUMO

Seafloor spreading centres show a regular along-axis segmentation thought to be produced by a segmented magma supply in the passively upwelling mantle. On the other hand, continental rifts are segmented by large offset normal faults, and many lack magmatism. It is unclear how, when and where the ubiquitous segmented melt zones are emplaced during the continental rupture process. Between 14 September and 4 October 2005, 163 earthquakes (magnitudes greater than 3.9) and a volcanic eruption occurred within the approximately 60-km-long Dabbahu magmatic segment of the Afar rift, a nascent seafloor spreading centre in stretched continental lithosphere. Here we present a three-dimensional deformation field for the Dabbahu rifting episode derived from satellite radar data, which shows that the entire segment ruptured, making it the largest to have occurred on land in the era of satellite geodesy. Simple elastic modelling shows that the magmatic segment opened by up to 8 m, yet seismic rupture can account for only 8 per cent of the observed deformation. Magma was injected along a dyke between depths of 2 and 9 km, corresponding to a total intrusion volume of approximately 2.5 km3. Much of the magma appears to have originated from shallow chambers beneath Dabbahu and Gabho volcanoes at the northern end of the segment, where an explosive fissural eruption occurred on 26 September 2005. Although comparable in magnitude to the ten year (1975-84) Krafla events in Iceland, seismic data suggest that most of the Dabbahu dyke intrusion occurred in less than a week. Thus, magma intrusion via dyking, rather than segmented normal faulting, maintains and probably initiated the along-axis segmentation along this sector of the Nubia-Arabia plate boundary.

9.
Science ; 305(5681): 236-9, 2004 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-15247476

RESUMO

Two contrasting views of the active deformation of Asia dominate the debate about how continents deform: (i) The deformation is primarily localized on major faults separating crustal blocks or (ii) deformation is distributed throughout the continental lithosphere. In the first model, western Tibet is being extruded eastward between the major faults bounding the region. Surface displacement measurements across the western Tibetan plateau using satellite radar interferometry (InSAR) indicate that slip rates on the Karakoram and Altyn Tagh faults are lower than would be expected for the extrusion model and suggest a significant amount of internal deformation in Tibet.

10.
Philos Trans A Math Phys Eng Sci ; 360(1801): 2873-88, 2002 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-12626271

RESUMO

The earthquake cycle is poorly understood. Earthquakes continue to occur on previously unrecognized faults. Earthquake prediction seems impossible. These remain the facts despite nearly 100 years of intensive study since the earthquake cycle was first conceptualized. Using data acquired from satellites in orbit 800 km above the Earth, a new technique, radar interferometry (InSAR), has the potential to solve these problems. For the first time, detailed maps of the warping of the Earth's surface during the earthquake cycle can be obtained with a spatial resolution of a few tens of metres and a precision of a few millimetres. InSAR does not need equipment on the ground or expensive field campaigns, so it can gather crucial data on earthquakes and the seismic cycle from some of the remotest areas of the planet. In this article, I review some of the remarkable observations of the earthquake cycle already made using radar interferometry and speculate on breakthroughs that are tantalizingly close.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...