Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 29(8)2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38675585

RESUMO

TiO2 was loaded on the porous nickel foam from the suspended ethanol solution and used for the photocatalytic removal of NOx. Such prepared material was heat-treated at various temperatures (400-600 °C) to increase the adhesion of TiO2 with the support. Obtained TiO2/nickel foam samples were characterized by XRD, UV-Vis/DR, FTIR, XPS, AFM, SEM, and nitrogen adsorption at 77 K. Photocatalytic tests of NO abatement were performed in the rectangular shape quartz reactor, irradiated from the top by UV LED light with an intensity of 10 W/m2. For these studies, a laminar flow of NO in the air (1 ppm) was applied under a relative humidity of 50% and a temperature of 28 °C. Concentrations of both NO and NO2 were monitored by a chemiluminescence NO analyzer. The adsorption of nitrogen species on the TiO2 surface was determined by FTIR spectroscopy. Performed studies revealed that increased temperature of heat treatment improves adhesion of TiO2 to the nickel foam substrate, decreases surface porosity, and causes removal of hydroxyl and alcohol groups from the titania surface. The less hydroxylated surface of TiO2 is more vulnerable to the adsorption of NO2 species, whereas the presence of OH groups on TiO2 enhances the adsorption of nitrate ions. Adsorbed nitrate species upon UV irradiation and moisture undergo photolysis to NO2. As a consequence, NO2 is released into the atmosphere, and the efficiency of NOx removal is decreasing. Photocatalytic conversion of NO to NO2 was higher for the sample heated at 400 °C than for that at 600 °C, although coverage of nickel foam by TiO2 was lower for the former one. It is stated that the presence of titania defects (Ti3+) at low temperatures of its heating enhances the adsorption of hydroxyl groups and the formation of hydroxyl radicals, which take part in NO oxidation. Contrary to that, the presence of titania defects in TiO2 through the formation of ilmenite structure (NiTiO3) in TiO2/nickel foam heated at 600 °C inhibits its photocatalytic activity. No less, the sample obtained at 600 °C indicated the highest abatement of NOx due to the high and stable adsorption of NO2 species on its surface.

2.
Molecules ; 29(5)2024 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-38474499

RESUMO

This work describes the effect of nitrogen and oxygen functional groups on the sorption properties of activated carbons produced from furfuryl alcohol. The poly(furfuryl) alcohol underwent carbonization in nitrogen, ammonia, and ammonia and air (in a 3:2 proportion) atmospheres at 600 °C for 4 h. The resulting materials were subsequently activated in a carbon dioxide atmosphere for 1 h at temperatures of 700 °C, 800 °C, 900 °C, and 1000 °C. The X-ray photoelectron spectroscopy (XPS) findings suggest that ammoxidation is superior to amination in terms of nitrogen doping. The maximum nitrogen concentration achieved after ammoxidation was 25 at.%, which decreased to 4 at.% after activation. Additionally, it was observed that oxygen functional groups have a greater impact on porous structure development compared to nitrogen functional groups. The materials activated through carbonization under an ammonia/air atmosphere attained the highest oxygen concentration of roughly 19 at.% as confirmed by XPS. The materials were evaluated for their sorption capacities for carbon dioxide and ethylene, which were 2.2 mmol/g and 2.9 mmol/g, respectively, at 30 °C.

3.
Materials (Basel) ; 16(15)2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37569944

RESUMO

Acetaldehyde decomposition was performed under heating at a temperature range of 25-125 °C and UV irradiation on TiO2 doped by metallic Ni powder and TiO2 supported on nickel foam. The process was carried out in a high-temperature reaction chamber, "The Praying MantisTM", with simultaneous in situ FTIR measurements and UV irradiation. Ni powder was added to TiO2 in the quantity of 0.5 to 5.0 wt%. The photothermal measurements of acetaldehyde decomposition indicated that the highest yield of acetaldehyde conversion on TiO2 and UV irradiation was obtained at 75 °C. The doping of nickel to TiO2 did not increase its photocatalytic activity. Contrary to that, the application of nickel foam as a support for TiO2 appeared to be highly advantageous because it increased the decomposition of acetaldehyde from 31 to 52% at 25 °C, and then to 85% at 100 °C in comparison with TiO2 itself. At the same time, the mineralization of acetaldehyde to CO2 doubled in the presence of nickel foam. However, oxidized nickel foam used as support for TiO2 was detrimental. Most likely, different mechanisms of electron transfer between Ni-TiO2 and NiO-TiO2 occurred. The application of nickel foam greatly enhanced the separation of free carriers in TiO2. As a consequence, high yields from the photocatalytic reactions were obtained.

4.
Materials (Basel) ; 16(13)2023 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-37444810

RESUMO

A crucial factor of a nitriding process of treated parts is surface roughness. Eight samples of 42CrMo4 steel were used to investigate the parameter represented by Ra. In the study, the innovative combined microhardness profiles were used to present results within the compound zone and diffusion layer. Therefore, two loads were applied in the compound zone, 5 gf, and diffusion layer, 500 gf. Observation with SEM and chemical analysis of the investigated samples showed a correlation between microstructure, nitrogen concentration and microhardness of the compound zone. XRD diffraction was used to identify the phase composition. Moreover, the X-ray photoelectron spectroscopy technique was also applied in the study. No distinct correlations between compound zone morphology and the Ra parameter were observed. The thickness value of the structure was constant and fluctuated around 20 µm in the vast majority of the examined cases. However, analysis of the results revealed a dependence between the Ra parameter and diffusion layer thickness. The values of this parameter varied in the range of 356-394 µm depending on the Ra parameter. A distinct nitrided layer was observed on the polished sample.

5.
Materials (Basel) ; 16(12)2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37374573

RESUMO

Activated carbons were prepared from avocado stone through NaOH activation and subsequent carbonization. The following textural parameters were achieved: specific surface area: 817-1172 m2/g, total pore volume: 0.538-0.691 cm3/g, micropore volume 0.259-0.375 cm3/g. The well-developed microporosity resulted in a good CO2 adsorption value of 5.9 mmol/g at a temperature of 0 °C and 1 bar and selectivity over nitrogen for flue gas simulation. The activated carbons were investigated using nitrogen sorption at -196 °C, CO2 sorption, X-ray diffraction, and SEM. It was found that the adsorption data were more in line with the Sips model. The isosteric heat of adsorption for the best sorbent was calculated. It was found that the isosteric heat of adsorption changed in the range of 25 to 40 kJ/mol depending on the surface coverage. The novelty of the work is the production of highly microporous activated carbons from avocado stones with high CO2 adsorption. Before now, the activation of avocado stones using NaOH had never been described.

6.
Molecules ; 27(22)2022 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-36431960

RESUMO

The influence of NH4NO3 and NH4ClO4 on the porous texture and structure development of activated carbons produced from a non-porous polymeric precursor synthesized from furfuryl alcohol has been studied. The non-doped counterparts were prepared and studied for comparison purposes. NH4NO3 and NH4ClO4-doped polymers were carbonized under N2 atmosphere at 600 °C, followed by CO2 activation at 1000 °C and the obtained carbon materials and activated carbons were thoroughly characterized. The porosity characterization data have shown that NH4NO3-derived ACs present the highest specific surface area (up to 1523 m2/g in the experimental conditions studied), and the resulting porosity distributions are strongly dependent on the activation conditions. Thus, 1 h activation is optimum for the microporosity development, whereas larger activation times lead to micropores enlargement and conversion into mesopores. The type of doping salts used also has a substantial impact on the surface chemical composition, i.e., C=O groups. Moreover, NH4NO3 and NH4ClO4 constitute good sources of nitrogen. The type and contribution of nitrogen species are dependent on the preparation conditions. Quaternary nitrogen only appears in doped samples prepared by carbonization and pyrrolic, pyrydinic, and nitrogen oxide groups appear in the NH4NO3 -series. NH4NO3 incorporation has led to optimized materials towards CO2 and C2H4 sorption with just 1 h activation time.

7.
Artigo em Inglês | MEDLINE | ID: mdl-36429724

RESUMO

Dental caries is listed by the WHO as one of the major non-communicable diseases that need to be prevented and treated. The aim of the study was to evaluate the prevalence and severity of caries expressed as the Decayed, Missing and Filled Permanent Teeth (DMFT) index in 12-year-old Polish children and to verify bacterial species related to the occurrence of dental caries. Quantitative real-time PCR analysis of DNA isolated from saliva samples was performed to detect 8 cariogenic and periopathogenic bacterial strains. A total of 118 Polish children were enrolled in the study. They had low mean DMFT scores of 1.58 ± 1.98. The prevalence of dental caries in the children tested was low (53.4%), with a tendency to decrease compared to previous oral surveys. Bacterial abundance of other species in the dental caries and caries-free groups did not differ; however, periopathogenic Prevotella pallens, Fusobacterium nucleatum along with cariogenic Streptococcus mutans and Lactobacillus fermentum were significantly strongly correlated in the caries-active subjects. The prevalence of S. sobrinus was significantly higher in children with dental caries (p = 0.023) and correlated with higher DMFT. It may temporarily play an important role in the initiation of the cariogenic process or in its enhancement due to an ecological imbalance in dental microbiota.


Assuntos
Cárie Dentária , Microbiota , Criança , Humanos , Streptococcus sobrinus/genética , Cárie Dentária/epidemiologia , Polônia/epidemiologia , Streptococcus mutans
8.
Molecules ; 27(21)2022 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-36364295

RESUMO

Cost-effective activated carbons for CO2 adsorption were developed from molasses using H2SO4, H3PO4, HCl, NaOH, and KOH as activating agents. At the temperature of 0 °C and a pressure of 1 bar, CO2 adsorption equal to 5.18 mmol/g was achieved over activated carbon obtained by KOH activation. The excellent CO2 adsorption of M-KOH can be attributed to its high microporosity. However, activated carbon prepared using HCl showed quite high CO2 adsorption while having very low microporosity. The absence of acid species on the surface promotes CO2 adsorption over M-HCl. The pore size ranges that are important for CO2 adsorption at different temperatures were estimated. The higher the adsorption temperature, the more crucial smaller pores were. For 1 bar pressure and temperatures of 0, 10, 20, and 30 °C, the most important were pores equal and below: 0.733, 0.733, 0.679, and 0.536 nm, respectively.

9.
Nutrients ; 14(12)2022 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-35745197

RESUMO

The aim of this report was to determine the impact of flaxseed, soy and red clover, and their bioactive substances on the lipid profile in postmenopausal women in cardiovascular diseases prevention. We used the following databases: MEDLINE (PubMed), EMBASE and the Cochrane Library. Meta-analysis indicates that the intake of flaxseed by postmenopausal women is associated with a statistically significant reduction in total cholesterol (TC) levels (weighted-mean difference (WMD) = -0.26; 95% confidence interval (95% CI): -0.38 to -0.13; p = 0.0001), low-density lipoprotein cholesterol (LDL-C) levels (WMD = -0.19; 95% CI: -0.30 to -0.08; p = 0.0006), and high-density lipoprotein cholesterol (HDL-C) levels (WMD = -0.06; 95% CI: -0.11 to -0.01; p = 0.0150). The effect of soy protein on the lipid profile showed a significant decrease in TC levels: WMD = -0.15; 95% CI: -0.25-0.05; p = 0.0048, LDL-C levels: WMD = -0.15; 95% CI: -0.25-0.05; p = 0.0067, as well as a significant increase in HDL-C levels: WMD = 0.05; 95% CI: 0.02-0.08; p = 0.0034. Changes in the lipid profile showed a significant reduction in TC levels after the use of red clover (WMD = -0.11; 95% CI: -0.18--0.04; p = 0.0017) and a significant increase in HDL-C levels (WMD = 0.04; 95% CI: 0.01 to 0.07; p = 0.0165). This meta-analysis provides evidence that consuming flaxseed, soy and red clover can have a beneficial effect on lipids in postmenopausal women and suggest a favorable effect in preventing cardiovascular diseases.


Assuntos
Doenças Cardiovasculares , Linho , Trifolium , Doenças Cardiovasculares/prevenção & controle , LDL-Colesterol , Feminino , Humanos , Fitoestrógenos/farmacologia , Pós-Menopausa , Glycine max
10.
J Chromatogr A ; 1673: 463127, 2022 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-35567814

RESUMO

Adsorption and chromatographic properties of oxidized and hydrogenated 'high pressure and high temperature' synthesised diamond (HPHT) are studied using high-performance liquid chromatography. The retention factors of organic cation (benzyltributylammonium chloride), weak base (aniline), weak acid (benzoic acid), strong acid (benzenesulfonic acid), hydrophobic toluene, and hydrophilic uracil are obtained at varied pH, organic solvent content, and ionic strength of mobile phase. Both adsorbents exhibited moderate polarity with a mixed-mode retention mechanism with a combination of electrostatic, hydrophobic and hydrophilic interactions. Unexpectedly, hydrogenated HPHT revealed significant anion-exchange properties under acidic conditions and cation-exchange properties under alkaline conditions, while only cation-exchange selectivity was noted for oxidized HPHT across the enntire pH range. The retention factors obtained for a set of model compounds including n-alkyl-, polymethyl-, nitro- and halogenated benzenes correlated well with their hydrophobicity (logP) values. The thermal stability of the adsorbent and immutability of retention mechanisms involved was confirmed by linear van't Hoff plots for the investigated compounds.


Assuntos
Temperatura , Cátions , Cromatografia Líquida de Alta Pressão/métodos , Interações Hidrofóbicas e Hidrofílicas , Solventes
11.
Molecules ; 26(24)2021 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-34946601

RESUMO

Zeolite 13X (NaX) was modified through ion-exchange with alkali and alkaline earth metal cations. The degree of ion exchange was thoroughly characterized with ICP, EDS and XRF methods. The new method of EDS data evaluation for zeolites was presented. It delivers the same reliable results as more complicated, expensive, time consuming and hazardous ICP approach. The highest adsorption capacities at 273 K and 0.95 bar were achieved for materials containing the alkali metals in the following order K < Na < Li, respectively, 4.54, 5.55 and 5.94 mmol/g. It was found that it is associated with the porous parameters of the ion-exchanged samples. The Li0.61Na0.39X form of zeolite exhibited the highest specific surface area of 624 m2/g and micropore volume of 0.35 cm3/g compared to sodium form 569 m2/g and 0.30 cm3/g, respectively. The increase of CO2 uptake is not related with deterioration of CO2 selectivity. At room temperature, the CO2 vs. N2 selectivity remains at a very high stable level prior and after ion exchange in co-adsorption process (XCO2 during adsorption 0.15; XCO2 during desorption 0.95) within measurement uncertainty. Additionally, the Li0.61Na0.39X sample was proven to be stable in the aging adsorption-desorption tests (200 sorption-desorption cycles; circa 11 days of continuous process) exhibiting the CO2 uptake decrease of about 6%. The exchange with alkaline earth metals (Mg, Ca) led to a significant decrease of SSA and micropore volume which correlated with lower CO2 adsorption capacities. Interestingly, the divalent cations cause formation of mesopores, due to the relaxation of lattice strains.

12.
Molecules ; 26(24)2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34946688

RESUMO

The aim of this study was to prepare activated carbon materials with different porous structures. For this purpose, the biomass precursor, beech wood, was carbonized in an inert atmosphere, and the obtained charcoal was physically activated using carbon dioxide at 1273 K. Different porous structures were obtained by controlling the time of the activation process. Prepared materials were characterized in terms of textural (N2 sorption at 77 K), structural (XRD), and sorption properties (CO2, C2H4, C4H10). The shortest activation time resulted in a mostly microporous structure, which provided a high sorption of CO2. Increasing the activation time led to an increasing of the pores' diameters. Therefore, the highest ethene uptake was obtained for the material with an intermediate activation time, while the highest butane uptake was obtained for the material with the highest activation time.


Assuntos
Carvão Vegetal/química , Madeira/química , Adsorção , Porosidade
13.
Materials (Basel) ; 14(24)2021 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-34947323

RESUMO

The work presents the synthesis of FeCl3-modified carbonaceous catalysts obtained from waste orange peel and their application in the oxidation of alpha-pinene in solvent-free reaction conditions. The use of waste orange peel as presented here (not described in the literature) is an effective and cheap way of managing this valuable and renewable biomass. FeCl3-modified carbonaceous materials were obtained by a two-stage method: in the first stage, activated carbon was obtained, and in the second stage, it was modified by FeCl3 in the presence of H3PO4 (three different molar ratios of these two compounds were used in the studies). The obtained FeCl3-modified carbon materials were subjected to detailed instrumental studies using the methods FT-IR (Fourier-transform Infrared Spectroscopy), XRD (X-ray Diffraction), SEM (Scanning Electron Microscope), EDXRF (Energy Dispersive X-ray Fluorescence) and XPS (X-ray Photoelectron Spectroscopy), while the textural properties of these materials were also studied, such as the specific surface area and total pore volume. Catalytic tests with the three modified activated carbons showed that the catalyst obtained with the participation of 6 M of FeCl3 and 3 M aqueous solutions of H3PO4 was the most active in the oxidation of alpha-pinene. Further tests (influence of temperature, amount of catalyst, and reaction time) with this catalyst made it possible to determine the most favorable conditions for conducting oxidation on this type of catalyst, and allowed study of the kinetics of this process. The most favorable conditions for the process were: temperature of 100 °C, catalyst content of 0.5 wt% and reaction time 120 min (very mild process conditions). The conversion of the organic raw material obtained under these conditions was 40 mol%, and the selectivity of the transformation to alpha-pinene oxide reached the value of 35 mol%. In addition to the epoxy compound, other valuable products, such as verbenone and verbenol, were formed while carrying out the process.

14.
Materials (Basel) ; 14(24)2021 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-34947405

RESUMO

DT0-activated carbons modified with HCl and HNO3 acids, which were used for the first time in the catalytic process of alpha-pinene isomerization, are presented in this study. The carbon materials DT0, DT0_HCl, DT0_HNO3, and DT0_HCl_HNO3 were examined with the following methods: XRF, SEM, EDX, XPS, FT-IR, XRD, and N2 adsorption at -196 °C. It was shown that DT0_HCl_HNO3-activated carbon was the most active material in the alpha-pinene isomerization process. Detailed studies of alpha-pinene isomerization were carried out over this carbon by changing the reaction parameters such as time (5-180 min) and temperature (60-175 °C). The 100% conversion of alpha-pinene was achieved at the temperature of 160 °C and catalyst content of 5 wt% after 3 h over the DT0_HCl_HNO3 catalyst. Camphene and limonene were the main products of the alpha-pinene isomerization reaction.

15.
Materials (Basel) ; 14(23)2021 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-34885454

RESUMO

One-hundred-nanometer films consisting of silver, copper, and gold nanocrystallites were prepared, and their antibacterial properties were quantitatively measured. The magnetron-sputtering method was used for the preparation of the metallic films over the glass plate. Single- and double-layer films were manufactured. The films were thoroughly characterized with the XRD, SEM, EDS, and XPS methods. The antibacterial activity of the samples was investigated. Gram-negative Escherichia coli, strain K12 ATCC 25922 (E. coli), and Gram-positive Staphylococcus epidermidis, ATCC 49461 (S. epidermidis), were used in the microbial tests. The crystallite size was about 30 nm in the cases of silver and gold and a few nanometers in the case of copper. Significant oxidation of the copper films was proven. The antibacterial efficacy of the tested samples followed the order: Ag/Cu > Au/Cu > Cu. It was concluded that such metallic surfaces may be applied as contact-killing materials for a more effective fight against bacteria and viruses.

16.
Materials (Basel) ; 14(23)2021 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-34885604

RESUMO

This work presents studies on the preparation of porous carbon materials from waste biomass in the form of orange peels, coffee grounds, and sunflower seed husks. The preparation of activated carbons from these three waste materials involved activation with KOH followed by carbonization at 800 °C in an N2 atmosphere. This way of obtaining the activated carbons is very simple and requires the application of only two reactants. Thus, this method is cheap, and it does not generate much chemical waste. The obtained activated carbons were characterized by XRD, SEM, XPS, and XRF methods. Moreover, the textural properties, acidity, and catalytic activity of these materials were descried. During catalytic tests carried out in the alpha-pinene isomerization process (the use of the activated carbons thus obtained in the process of alpha-pinene isomerization has not been described so far), the most active were activated carbons obtained from coffee grounds and orange peels. Generally, the catalytic activity of the obtained materials depended on the pore size, and the most active activated carbons had more pores with sizes of 0.7-1.0 and 1.1-1.4 nm. Moreover, the presence of potassium and chlorine ions in the pores may also be of key importance for the alpha-pinene isomerization process. On the other hand, the acidity of the surface of the tested active carbons did not affect their catalytic activity. The most favorable conditions for carrying out the alpha-pinene isomerization process were the same for the three tested activated carbons: temperature 160 °C, amount of the catalyst 5 wt.%, and reaction time 3 h. Kinetic studies were also carried out for the three tested catalysts. These studies showed that the isomerization over activated carbons from orange peels, coffee grounds, and sunflower seed husks is a first-order reaction.

17.
Int J Mol Sci ; 22(13)2021 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-34281209

RESUMO

We sequenced the plastid genomes of three diatoms from the genus Climaconeis, including two strains formerly designated as Climaconeis scalaris. At 208,097 and 216,580 bp, the plastid genomes of the latter strains are the largest ever sequenced among diatoms and their increased size is explained by the massive expansion of the inverted repeat region. Important rearrangements of gene order were identified among the two populations of Climaconeis cf. scalaris. The other sequenced Climaconeis chloroplast genome is 1.5 times smaller compared with those of the Climaconeis cf. scalaris strains and it features an usual quadripartite structure. The extensive structural changes reported here for the genus Climaconeis are compared with those previously observed for other algae and plants displaying large plastid genomes.


Assuntos
Expansão das Repetições de DNA , Diatomáceas/genética , Genomas de Plastídeos , Sequências Repetidas Invertidas , Diatomáceas/ultraestrutura
18.
Materials (Basel) ; 14(1)2021 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-33466504

RESUMO

This paper describes the microstructure and properties of titanium-based composites obtained as a result of a reactive spark plasma sintering of a mixture of titanium and nanostructured (Ti,Mo)C-type carbide in a carbon shell. Composites with different ceramic addition mass percentage (10 and 20 wt %) were produced. Effect of content of elemental carbon covering nc-(Ti,Mo)C reinforcing phase particles on the microstructure, mechanical, tribological, and corrosion properties of the titanium-based composites was investigated. The microstructural evolution, mechanical properties, and tribological behavior of the Ti + (Ti,Mo)C/C composites were evaluated using X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), electron backscatter diffraction analysis (EBSD), X-ray photoelectron spectroscopy (XPS), 3D confocal laser scanning microscopy, nanoindentation, and ball-on-disk wear test. Moreover, corrosion resistance in a 3.5 wt % NaCl solution at RT were also investigated. It was found that the carbon content affected the tested properties. With the increase of carbon content from ca. 3 to 40 wt % in the (Ti,Mo)C/C reinforcing phase, an increase in the Young's modulus, hardness, and fracture toughness of spark plasma sintered composites was observed. The results of abrasive and corrosive resistance tests were presented and compared with experimental data obtained for cp-Ti and Ti-6Al-4V alloy without the reinforcing phase. Moreover, it was found that an increase in the percentage of carbon increased the resistance to abrasive wear and to electrochemical corrosion of composites, measured by the relatively lower values of the friction coefficient and volume of wear and higher values of resistance polarization. This resistance results from the fact that a stable of TiO2 layer doped with MoO3 is formed on the surface of the composites. The results of experimental studies on the composites were compared with those obtained for cp-Ti and Ti-6Al-4V alloy without the reinforcing phase.

19.
Materials (Basel) ; 15(1)2021 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-35009312

RESUMO

The aim of the research was to determine how the admixture of nanosilica affects the structure and mechanical performance of cement concrete exposed to high temperatures (200, 400, 600, and 800 °C). The structural tests were carried out on the cement paste and concrete using the methods of thermogravimetric analysis, mercury porosimetry, and scanning electron microscopy. The results show that despite the growth of the cement matrix's total porosity with an increasing amount of nanosilica, the resistance to high temperature improves. Such behavior is the result of not only the thermal characteristics of nanosilica itself but also of the porosity structure in the cement matrix and using the effective method of dispersing the nanostructures in concrete. The nanosilica densifies the structure of the concrete, limiting the number of the pores with diameters from 0.3 to 300 µm, which leads to limitation of the microcracks, particularly in the coarse aggregate-cement matrix contact zone. This phenomenon, in turn, diminishes the cracking of the specimens containing nanosilica at high temperatures and improves the mechanical strength.

20.
PeerJ ; 8: e9406, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32742770

RESUMO

BACKGROUND: The Aegean Sea coast of Turkey hosts one of the most important nesting grounds for loggerhead sea turtles (Caretta caretta) in the Mediterranean Sea. Previous studies have revealed that the sea turtle carapace provides favourable conditions for various epibiontic organisms. Epibionts occurring on the carapace have been examined from different locations in the oceans. METHODS: This is the first time such a high number (39) of samples collected from nesting turtles during such a long time period (extending from 2011 to 2018) has been used for the study of the diatom component of the microbiome on the turtle carapaces. A total of 33 samples were investigated in terms of light microscopy (LM) and scanning electron microscopy (SEM). Six unprocessed biofilm fragments were subject to SEM observations. RESULTS: A total of 457 epizoic diatom taxa belonging to 86 genera were identified. Epizoic forms, e.g., Achnanthes spp., Chelonicola spp. or Tripterion spp. (also identified by SEM observations of the undisturbed pieces of the microbiome) dominated in terms of relative abundance, but the highest numbers of taxa were ubiquitously represented by Navicula (79), Nitzschia (45), Amphora (40), Cocconeis (32), Diploneis (25) and Mastogloia (23). Navicula perminuta and Delphineis australis were the most frequent taxa, present in 65% of the samples, both with an average relative abundance of 10%. The results of our study revealed that diatoms are an essential component of the loggerhead sea turtles' microbiome, in terms of high biodiversity and abundance. Although strict epibionts provide a signature of the turtle microbiome, the carapace as a solid substrate attracts numerous benthic diatom species which are considered opportunistic forms and can be found in the surrounding benthic habitats of the vast ocean littoral space.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...