Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Ther Nucleic Acids ; 35(3): 102229, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-38952440

RESUMO

p47 phox -deficient chronic granulomatous disease (p47-CGD) is a primary immunodeficiency caused by mutations in the neutrophil cytosolic factor 1 (NCF1) gene, resulting in defective NADPH oxidase function in phagocytes. Due to its complex genomic context, the NCF1 locus is not suited for safe gene editing with current genome editing technologies. Therefore, we developed a targeted NCF1 coding sequence knock-in by CRISPR-Cas9 ribonucleoprotein and viral vector template delivery, to restore p47 phox expression under the control of the endogenous NCF2 locus. NCF2 encodes for p67 phox , an NADPH oxidase subunit that closely interacts with p47 phox and is predominantly expressed in myeloid cells. This approach restored p47 phox expression and NADPH oxidase function in p47-CGD patient hematopoietic stem and progenitor cells (HSPCs) and in p47 phox -deficient mouse HSPCs, with the transgene expression following a myeloid differentiation pattern. Adeno-associated viral vectors performed favorably over integration-deficient lentiviral vectors for template delivery, with fewer off-target integrations and higher correction efficacy in HSPCs. Such myeloid-directed gene editing is promising for clinical CGD gene therapy, as it leads to the co-expression of p47 phox and p67 phox , ensuring spatiotemporal and near-physiological transgene expression in myeloid cells.

2.
Front Cell Dev Biol ; 8: 608600, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33365312

RESUMO

Neutrophils are the first cells recruited at the site of infections, where they phagocytose the pathogens. Inside the phagosome, pathogens are killed by proteolytic enzymes that are delivered to the phagosome following granule fusion, and by reactive oxygen species (ROS) produced by the NADPH oxidase. The NADPH oxidase complex comprises membrane proteins (NOX2 and p22phox), cytoplasmic subunits (p67phox, p47phox, and p40phox) and the small GTPase Rac. These subunits assemble at the phagosomal membrane upon phagocytosis. In resting neutrophils the catalytic subunit NOX2 is mainly present at the plasma membrane and in the specific granules. We show here that NOX2 is also present in early and recycling endosomes in human neutrophils and in the neutrophil-like cell line PLB-985 expressing GFP-NOX2. In the latter cells, an increase in NOX2 at the phagosomal membrane was detected by live-imaging after phagosome closure, probably due to fusion of endosomes with the phagosome. Using super-resolution microscopy in PLB-985 WT cells, we observed that NOX2 forms discrete clusters in the plasma membrane. The number of clusters increased during frustrated phagocytosis. In PLB-985NCF1ΔGT cells that lack p47phox and do not assemble a functional NADPH oxidase, the number of clusters remained stable during phagocytosis. Our data suggest a role for p47phox and possibly ROS production in NOX2 recruitment at the phagosome.

3.
Mol Ther Methods Clin Dev ; 17: 936-943, 2020 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-32420407

RESUMO

Resurrection of non-processed pseudogenes may increase the efficacy of therapeutic gene editing, upon simultaneous targeting of a mutated gene and its highly homologous pseudogenes. To investigate the potency of this approach for clinical gene therapy of human diseases, we corrected a pseudogene-associated disorder, the immunodeficiency p47 phox -deficient chronic granulomatous disease (p47 phox CGD), using clustered regularly interspaced short palindromic repeats-associated nuclease Cas9 (CRISPR-Cas9) to target mutated neutrophil cytosolic factor 1 (NCF1). Being separated by less than two million base pairs, NCF1 and two pseudogenes are closely co-localized on chromosome 7. In healthy people, a two-nucleotide GT deletion (ΔGT) is present in the NCF1B and NCF1C pseudogenes only. In the majority of patients with p47 phox CGD, the NCF1 gene is inactivated due to a ΔGT transfer from one of the two non-processed pseudogenes. Here we demonstrate that concurrent targeting and correction of mutated NCF1 and its pseudogenes results in therapeutic CGD phenotype correction, but also causes potentially harmful chromosomal deletions between the targeted loci in a p47 phox -deficient CGD cell line model. Therefore, development of genome-editing-based treatment of pseudogene-related disorders mandates thorough safety examination, as well as technological advances, limiting concurrent induction of multiple double-strand breaks on a single chromosome.

4.
Mol Ther Methods Clin Dev ; 13: 274-278, 2019 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-30859112

RESUMO

Chronic granulomatous disease (CGD) is a primary immunodeficiency caused by mutations of the phagocytic nicotinamide adenine dinucleotide phosphate (NADPH) oxidase. Autosomal recessive p47 phox -deficient CGD (p47 phox CGD) is the second most frequent form of the disease in western countries, and more than 94% of patients have a disease-causing dinucleotide deletion (ΔGT) in the neutrophil cytosolic factor 1 (NCF1) gene. The ΔGT mutation is most likely transferred onto the NCF1 from one of its two pseudogenes co-localized on the same chromosome. The presence of NCF1 pseudogenes in healthy individuals makes the genetic diagnostics of ΔGT p47 phox CGD challenging, as it requires the distinction between ΔGT in NCF1 and in the two pseudogenes. We have developed a diagnostic tool for the identification of p47 phox CGD based on PCR co-amplification of NCF1 and its pseudogenes, followed by band intensity quantification of restriction fragment length polymorphism products. The single-day, reliable p47 phox CGD diagnostics allow for robust discrimination of homozygous ΔGT p47phox CGD patients from heterozygous carriers and healthy individuals, as well as for monitoring gene therapy efficacy.

5.
Sci Rep ; 7: 44187, 2017 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-28287132

RESUMO

Development of gene therapy vectors requires cellular models reflecting the genetic background of a disease thus allowing for robust preclinical vector testing. For human p47phox-deficient chronic granulomatous disease (CGD) vector testing we generated a cellular model using clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 to introduce a GT-dinucleotide deletion (ΔGT) mutation in p47phox encoding NCF1 gene in the human acute myeloid leukemia PLB-985 cell line. CGD is a group of hereditary immunodeficiencies characterized by impaired respiratory burst activity in phagocytes due to a defective phagocytic nicotinamide adenine dinucleotide phosphate (NADPH) oxidase. In Western countries autosomal-recessive p47phox-subunit deficiency represents the second largest CGD patient cohort with unique genetics, as the vast majority of p47phox CGD patients carries ΔGT deletion in exon two of the NCF1 gene. The established PLB-985 NCF1 ΔGT cell line reflects the most frequent form of p47phox-deficient CGD genetically and functionally. It can be differentiated to granulocytes efficiently, what creates an attractive alternative to currently used iPSC models for rapid testing of novel gene therapy approaches.


Assuntos
Sistemas CRISPR-Cas , Terapia Genética/métodos , Vetores Genéticos , Doença Granulomatosa Crônica , Sequência de Bases , Doença Granulomatosa Crônica/genética , Doença Granulomatosa Crônica/metabolismo , Doença Granulomatosa Crônica/patologia , Doença Granulomatosa Crônica/terapia , Células HL-60 , Humanos , NADPH Oxidases/genética , NADPH Oxidases/metabolismo , Deleção de Sequência
6.
Sci Rep ; 6: 29842, 2016 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-27431907

RESUMO

Influenza virions are enriched in cholesterol relative to the plasma membrane from which they bud. Previous work has shown that fusion between influenza virus and synthetic liposomes is sensitive to the amount of cholesterol in either the virus or the target membrane. Here, we test the chemical properties of cholesterol required to promote influenza fusion by replacing cholesterol with other sterols and assaying viral fusion kinetics. We find that influenza fusion with liposomes is surprisingly robust to sterol chemical identity, showing no significant dependence on sterol identity in target membranes for any of the sterols tested. In the viral membrane, lanosterol slowed fusion somewhat, while polar sterols produced a more pronounced slowing and inhibition of fusion. No other sterols tested showed a significant perturbation in fusion rates, including ones previously shown to alter membrane bending moduli or phase behavior. Although fusion rates depend on viral cholesterol, they thus do not require cholesterol's ability to support liquid-liquid phase coexistence. Using electron cryo-microscopy, we further find that sterol-dependent changes to hemagglutinin spatial patterning in the viral membrane do not require liquid-liquid phase coexistence. We therefore speculate that local sterol-hemagglutinin interactions in the viral envelope may control the rate-limiting step of fusion.


Assuntos
Vírus da Influenza A Subtipo H3N2/metabolismo , Fusão de Membrana , Esteróis/metabolismo , Vírion/metabolismo , Animais , Membrana Celular/química , Membrana Celular/metabolismo , Colesterol/química , Colesterol/metabolismo , Microscopia Crioeletrônica , Cães , Hemaglutininas Virais/química , Hemaglutininas Virais/metabolismo , Vírus da Influenza A Subtipo H3N2/ultraestrutura , Cinética , Lipossomos/química , Lipossomos/metabolismo , Células Madin Darby de Rim Canino , Lipídeos de Membrana/química , Lipídeos de Membrana/metabolismo , Simulação de Dinâmica Molecular , Estrutura Molecular , Esteróis/química , Vírion/ultraestrutura , beta-Ciclodextrinas/química , beta-Ciclodextrinas/metabolismo
7.
Biophys J ; 105(6): 1383-7, 2013 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-24047989

RESUMO

The envelope lipid composition of influenza virus differs from that of the cellular plasma membrane from which it buds. Viruses also appear to fuse preferentially to specific membrane compartments, suggesting that the lipid environment may influence permissiveness for fusion. Here, we investigated the influence of the membrane environment on fusion, focusing on cholesterol composition. Strikingly, manipulating cholesterol levels in the viral membrane had different effects on fusion kinetics compared with analogous changes to the target membrane. Increasing cholesterol content in target vesicles increased lipid- and contents-mixing rates. Moderate cholesterol depletion from the viral membrane sped fusion rates, whereas severe depletion slowed the process. The pleiotropic effects of cholesterol include alterations in both membrane-bending moduli and lateral organization. Because influenza virions have demonstrated cholesterol-dependent lateral organization, to separate these effects, we deliberately selected a target vesicle composition that does not support lateral heterogeneity. We therefore postulate that the monotonic response of fusion kinetics to target membrane cholesterol reflects bending and curvature effects, whereas the multiphasic response to viral cholesterol levels reflects the combined effects of lateral organization and material properties.


Assuntos
Colesterol/metabolismo , Orthomyxoviridae/fisiologia , Internalização do Vírus , Cinética , Lipossomos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...