Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chromatogr A ; 1719: 464754, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38428340

RESUMO

Aviation turbine fuel is a complex mixture of thousands of compounds. An analytical method using hydrophilic interaction liquid chromatography (HILIC) coupled with electrospray ionization and quadrupole time-of-flight mass spectrometry (ESI-QTOF) was developed for the identification of heteroatomic, polar compounds in aviation turbine fuel. Although compounds containing oxygen, nitrogen, and sulfur functional groups are each found at low levels (<0.1 % by mass) in fuels, their presence can generate significant effects on fuel properties. The HILIC-ESI-QTOF method is a combined separation and detection technique that possesses many advantages including a fast and simple sample preparation-requiring no extraction step therefore ensuring no loss of compounds of interest-and the ability to acquire high-fidelity compound data for chemometric analysis of heteroatomic species in aviation turbine fuel. In the development of the method, it was found that the chromatographic conditions and nature of the injection sample had a significant effect on separation efficiency and repeatability. For a sample dataset optimized using a singular aviation turbine fuel, retention time shift was able to be reduced from 0.4 min to 2.0 % relative standard deviation (RSD) to approximately 0.1 min with RSD of 0.4 % using the newly developed method. In addition, a high number of untargeted molecular features (944) and targeted amines (121) were able to be identified when utilizing optimal method conditions. The specific benefits and limitations of utilizing HILIC techniques with HPLC-ESI-QTOF are also discussed herein. This new method is currently being expanded to include analysis of all heteroatoms and is being applied to real fuel sets. The results of these studies are forthcoming.


Assuntos
Aviação , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas por Ionização por Electrospray/métodos , Cromatografia Líquida de Alta Pressão/métodos , Cromatografia Líquida/métodos , Interações Hidrofóbicas e Hidrofílicas
2.
Appl Opt ; 59(8): 2649-2655, 2020 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-32225810

RESUMO

Width-increased dual-pump enhanced coherent anti-Stokes Raman spectroscopy (WIDECARS) measurements were used to determine the temperature and major species mole fractions in laminar, premixed, ethylene-air flames operating at atmospheric pressure. Conventional ultrabroadband dye lasers for WIDECARS, which use Pyrromethene dyes, have historically suffered from day-to-day wavelength shifting. To overcome this problem, a new ultrabroadband dye laser was developed in this study to provide a stable wavelength and power generation. A new dye laser pumping scheme and a mixture of Sulforhodamine 640, Kiton Red 620, and Rhodamine 640, was used to generate the desired FWHM ${\sim}{15}\;{\rm nm}$∼15nm (${410}\;{{\rm cm}^{ - 1}}$410cm-1) bandwidth. The WIDECARS measured mole fraction ratios of ${{\rm CO}_2}$CO2, CO, and ${{\rm H}_2}$H2 with ${{\rm N}_2}$N2 agreed well with chemical equilibrium calculations.

3.
J Chem Phys ; 145(12): 124308, 2016 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-27782654

RESUMO

A resonantly enhanced, two-color, femtosecond time-resolved coherent anti-Stokes Raman scattering (CARS) approach is demonstrated and used to explore the nature of the frequency- and time-dependent signals produced by gas-phase nitric oxide (NO). Through careful selection of the input pulse wavelengths, this fully resonant electronically enhanced CARS (FREE-CARS) scheme allows rovibronic-state-resolved observation of time-dependent rovibrational wavepackets propagating on the vibrationally excited ground-state potential energy surface of this diatomic species. Despite the use of broadband, ultrafast time-resolved input pulses, high spectral resolution of gas-phase rovibronic transitions is observed in the FREE-CARS signal, dictated by the electronic dephasing timescales of these states. Analysis and computational simulation of the time-dependent spectra observed as a function of pump-Stokes and Stokes-probe delays provide insight into the rotationally resolved wavepacket motion observed on the excited-state and vibrationally excited ground-state potential energy surfaces of NO, respectively.

4.
Opt Lett ; 41(9): 2021-4, 2016 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-27128064

RESUMO

Femtosecond time-resolved, fully resonant electronically enhanced coherent anti-Stokes Raman scattering (FREE-CARS) spectroscopy, incorporating a two-color excitation scheme, is used to demonstrate selective and sensitive gas-phase detection of the hydroxyl (OH) radical in a reacting flow. Spectral resolution of the emitted FREE-CARS signal allows simultaneous detection of temperature and relative OH mole fraction under single-laser-shot conditions in a laminar ethylene-air flame. By comparison to previously reported OH concentration and temperature measurements, we demonstrate excellent single-shot temperature accuracies (∼2% deviation from adiabatic flame temperature) and precisions (∼2% standard deviation), with simultaneous relative OH concentration measurements that demonstrate high detection sensitivity (100-300 ppm).

5.
Opt Express ; 20(21): 23390-7, 2012 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-23188303

RESUMO

Spectral focusing using broadband femtosecond pulses to achieve highly selective measurements has been employed for numerous applications in spectroscopy and microspectroscopy. In this work we highlight the use of spectral focusing for selective excitation and detection of gas-phase species. Furthermore, we demonstrate that spectral focusing, coupled with time-resolved measurements based upon probe delay, allows the observation of interference-free coherence dynamics of multiple molecules and gas-phase temperature making this technique ideal for gas-phase measurements of reacting flows and combustion processes.


Assuntos
Algoritmos , Gases/análise , Gases/química , Modelos Químicos , Análise Espectral/métodos , Simulação por Computador
6.
Opt Express ; 19(6): 5163-71, 2011 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-21445152

RESUMO

The use of femtosecond-laser sources for the diagnostics of combustion and reacting-flow environments requires detailed knowledge of optical dispersive properties of the medium interacting with the laser beams. Here the second- and third-order dispersion values for nitrogen, oxygen, air, carbon dioxide, ethylene, acetylene, and propane within the 700-900 nm range are reported, along with the pressure dependence of the chromatic dispersion. The effect of dispersion on axial resolution when applied to nonlinear spectroscopy with ultrabroadband pulses is also discussed.

7.
Appl Opt ; 48(4): B17-22, 2009 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-19183575

RESUMO

The detection of chemicals from safe distances is vital in environments with potentially hazardous or explosive threats, where high sensitivity and fast detection speed are needed. Here we demonstrate standoff detection of several solids, liquids, and gases with single-beam coherent anti-Stokes Raman scattering. This approach utilizes a phase coherent ultrabroad-bandwidth femtosecond laser to probe the fundamental vibrations that constitute a molecule's fingerprint. Characteristic Raman lines for several chemicals are successfully obtained from arms-length and 12 m standoff distances. The sensitivity and speed of this approach are also demonstrated.


Assuntos
Algoritmos , Substâncias Explosivas/análise , Substâncias Explosivas/química , Substâncias Perigosas/análise , Lasers , Microquímica/métodos , Análise Espectral Raman/métodos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
8.
Opt Express ; 16(8): 5499-504, 2008 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-18542653

RESUMO

We report the detection of characteristic Raman lines for several chemicals using a single-beam coherent anti-Stokes Raman scattering (CARS) technique from a 12 meter standoff distance. Single laser shot spectra are obtained with sufficient signal to noise ratio to allow molecular identification. Background and spectroscopic discrimination are achieved through binary phase pulse shaping for optimal excitation of a single vibrational mode. These results provide a promising approach to standoff detection of chemicals, hazardous contaminants, and explosives.


Assuntos
Algoritmos , Monitoramento Ambiental/métodos , Lasers , Espectrometria de Massas/métodos , Análise Espectral Raman/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...