Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 486
Filtrar
1.
Brain Pathol ; : e13286, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38988008

RESUMO

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder characterized by upper and lower motor neuron signs. There are, however, cases where upper motor neurons (UMNs) are predominantly affected, leading to clinical presentations of UMN-dominant ALS or primary lateral sclerosis. Furthermore, cases exhibiting an UMN-predominant pattern of motor neuron disease (MND) presenting with corticobasal syndrome (CBS) have been sparsely reported. This study aims to clarify the clinicopathological features of patients with UMN-predominant MND. We reviewed 24 patients with UMN-predominant MND with TDP-43 pathology in the presence or absence of frontotemporal lobar degeneration. Additionally, we reviewed the medical records of patients with pathologically-confirmed corticobasal degeneration (CBD) who received a final clinical diagnosis of CBS (n = 10) and patients with pathologically-confirmed progressive supranuclear palsy (PSP) who received a final clinical diagnosis of PSP syndrome (n = 10). Of 24 UMN-predominant MND patients, 20 had a clinical diagnosis of an atypical parkinsonian disorder, including CBS (n = 11) and PSP syndrome (n = 8). Only two patients had antemortem diagnoses of motor neuron disease. UMN-predominant MND patients with CBS less frequently exhibited apraxia than those with CBD, and they were less likely to meet clinical criteria for possible or probable CBS. Similarly, UMN-predominant MND patients with PSP syndrome less often met clinical criteria for probable PSP than PSP patients with PSP syndrome. Our findings suggest that UMN-predominant MND can mimic atypical parkinsonism, and should be considered in the differential diagnosis of CBS and PSP syndrome, in particular when criteria are not met.

2.
JMIR Aging ; 7: e52831, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38922667

RESUMO

BACKGROUND: Frontotemporal lobar degeneration (FTLD) is a leading cause of dementia in individuals aged <65 years. Several challenges to conducting in-person evaluations in FTLD illustrate an urgent need to develop remote, accessible, and low-burden assessment techniques. Studies of unobtrusive monitoring of at-home computer use in older adults with mild cognitive impairment show that declining function is reflected in reduced computer use; however, associations with smartphone use are unknown. OBJECTIVE: This study aims to characterize daily trajectories in smartphone battery use, a proxy for smartphone use, and examine relationships with clinical indicators of severity in FTLD. METHODS: Participants were 231 adults (mean age 52.5, SD 14.9 years; n=94, 40.7% men; n=223, 96.5% non-Hispanic White) enrolled in the Advancing Research and Treatment of Frontotemporal Lobar Degeneration (ARTFL study) and Longitudinal Evaluation of Familial Frontotemporal Dementia Subjects (LEFFTDS study) Longitudinal Frontotemporal Lobar Degeneration (ALLFTD) Mobile App study, including 49 (21.2%) with mild neurobehavioral changes and no functional impairment (ie, prodromal FTLD), 43 (18.6%) with neurobehavioral changes and functional impairment (ie, symptomatic FTLD), and 139 (60.2%) clinically normal adults, of whom 55 (39.6%) harbored heterozygous pathogenic or likely pathogenic variants in an autosomal dominant FTLD gene. Participants completed the Clinical Dementia Rating plus National Alzheimer's Coordinating Center Frontotemporal Lobar Degeneration Behavior and Language Domains (CDR+NACC FTLD) scale, a neuropsychological battery; the Neuropsychiatric Inventory; and brain magnetic resonance imaging. The ALLFTD Mobile App was installed on participants' smartphones for remote, passive, and continuous monitoring of smartphone use. Battery percentage was collected every 15 minutes over an average of 28 (SD 4.2; range 14-30) days. To determine whether temporal patterns of battery percentage varied as a function of disease severity, linear mixed effects models examined linear, quadratic, and cubic effects of the time of day and their interactions with each measure of disease severity on battery percentage. Models covaried for age, sex, smartphone type, and estimated smartphone age. RESULTS: The CDR+NACC FTLD global score interacted with time on battery percentage such that participants with prodromal or symptomatic FTLD demonstrated less change in battery percentage throughout the day (a proxy for less smartphone use) than clinically normal participants (P<.001 in both cases). Additional models showed that worse performance in all cognitive domains assessed (ie, executive functioning, memory, language, and visuospatial skills), more neuropsychiatric symptoms, and smaller brain volumes also associated with less battery use throughout the day (P<.001 in all cases). CONCLUSIONS: These findings support a proof of concept that passively collected data about smartphone use behaviors associate with clinical impairment in FTLD. This work underscores the need for future studies to develop and validate passive digital markers sensitive to longitudinal clinical decline across neurodegenerative diseases, with potential to enhance real-world monitoring of neurobehavioral change.


Assuntos
Demência Frontotemporal , Smartphone , Humanos , Feminino , Masculino , Pessoa de Meia-Idade , Demência Frontotemporal/diagnóstico , Demência Frontotemporal/fisiopatologia , Idoso , Índice de Gravidade de Doença , Estudo de Prova de Conceito , Adulto , Estudos Longitudinais , Testes Neuropsicológicos , Aplicativos Móveis
3.
Nat Genet ; 56(6): 1090-1099, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38839884

RESUMO

Restless legs syndrome (RLS) affects up to 10% of older adults. Their healthcare is impeded by delayed diagnosis and insufficient treatment. To advance disease prediction and find new entry points for therapy, we performed meta-analyses of genome-wide association studies in 116,647 individuals with RLS (cases) and 1,546,466 controls of European ancestry. The pooled analysis increased the number of risk loci eightfold to 164, including three on chromosome X. Sex-specific meta-analyses revealed largely overlapping genetic predispositions of the sexes (rg = 0.96). Locus annotation prioritized druggable genes such as glutamate receptors 1 and 4, and Mendelian randomization indicated RLS as a causal risk factor for diabetes. Machine learning approaches combining genetic and nongenetic information performed best in risk prediction (area under the curve (AUC) = 0.82-0.91). In summary, we identified targets for drug development and repurposing, prioritized potential causal relationships between RLS and relevant comorbidities and risk factors for follow-up and provided evidence that nonlinear interactions are likely relevant to RLS risk prediction.


Assuntos
Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Síndrome das Pernas Inquietas , Síndrome das Pernas Inquietas/genética , Humanos , Fatores de Risco , Feminino , Masculino , Polimorfismo de Nucleotídeo Único , Análise da Randomização Mendeliana , Aprendizado de Máquina
4.
Neuron ; 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38897209

RESUMO

Microglia replacement strategies are increasingly being considered for the treatment of primary microgliopathies like adult-onset leukoencephalopathy with axonal spheroids and pigmented glia (ALSP). However, available mouse models fail to recapitulate the diverse neuropathologies and reduced microglia numbers observed in patients. In this study, we generated a xenotolerant mouse model lacking the fms-intronic regulatory element (FIRE) enhancer within Csf1r, which develops nearly all the hallmark pathologies associated with ALSP. Remarkably, transplantation of human induced pluripotent stem cell (iPSC)-derived microglial (iMG) progenitors restores a homeostatic microglial signature and prevents the development of axonal spheroids, white matter abnormalities, reactive astrocytosis, and brain calcifications. Furthermore, transplantation of CRISPR-corrected ALSP-patient-derived iMG reverses pre-existing spheroids, astrogliosis, and calcification pathologies. Together with the accompanying study by Munro and colleagues, our results demonstrate the utility of FIRE mice to model ALSP and provide compelling evidence that iMG transplantation could offer a promising new therapeutic strategy for ALSP and perhaps other microglia-associated neurological disorders.

5.
Nat Genet ; 56(7): 1371-1376, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38858457

RESUMO

Despite substantial progress, causal variants are identified only for a minority of familial Parkinson's disease (PD) cases, leaving high-risk pathogenic variants unidentified1,2. To identify such variants, we uniformly processed exome sequencing data of 2,184 index familial PD cases and 69,775 controls. Exome-wide analyses converged on RAB32 as a novel PD gene identifying c.213C > G/p.S71R as a high-risk variant presenting in ~0.7% of familial PD cases while observed in only 0.004% of controls (odds ratio of 65.5). This variant was confirmed in all cases via Sanger sequencing and segregated with PD in three families. RAB32 encodes a small GTPase known to interact with LRRK2 (refs. 3,4). Functional analyses showed that RAB32 S71R increases LRRK2 kinase activity, as indicated by increased autophosphorylation of LRRK2 S1292. Here our results implicate mutant RAB32 in a key pathological mechanism in PD-LRRK2 kinase activity5-7-and thus provide novel insights into the mechanistic connections between RAB family biology, LRRK2 and PD risk.


Assuntos
Predisposição Genética para Doença , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina , Doença de Parkinson , Proteínas rab de Ligação ao GTP , Humanos , Doença de Parkinson/genética , Proteínas rab de Ligação ao GTP/genética , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Feminino , Masculino , Linhagem , Pessoa de Meia-Idade , Mutação , Exoma/genética , Sequenciamento do Exoma , Estudos de Casos e Controles , Idoso
6.
Neurology ; 102(11): e209437, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38759141

RESUMO

OBJECTIVES: To validate a recently published study in which skin biopsy was reported as a valuable alternative to brain biopsy in diagnosing CSF1R-related disorder (CSF1R-RD). METHODS: Blinded evaluation of skin samples was performed by independent reviewers using light and electron microscopy collected from a group of CSF1R variant carriers (n = 10) with various genotypes (mono and biallelic), different stages of the disease (asymptomatic and symptomatic), and exposed to different therapies (glucocorticoids, hematopoietic stem cell transplantation, and TREM2 agonist), and from a group of healthy controls (n = 5). RESULTS: Biopsies from patients with CSF1R-RD at various disease stages were indistinguishable from controls determined using light microscopy and electron microscopy. DISCUSSION: We found no distinctive axonal pathology in skin biopsies collected from CSF1R variant carriers at all stages of the disease. Our results are consistent with clinical and neurophysiologic features of the CSF1R-RD, in that peripheral nervous system involvement has not been reported. Studies aiming to discover new biomarkers are important, but the results must be validated with larger numbers of patients and healthy controls. Based on blinded light and electron microscopic studies of skin biopsies, there is no evidence that CSF1R-RD is associated with distinctive changes in cutaneous peripheral nerves. This suggests that skin biopsy is not useful in diagnosis of CSF1R-RD. CLASSIFICATION OF EVIDENCE: This study provides Class III evidence that skin biopsy does not distinguish those with CSF1R-RD, or carriers, from normal controls.


Assuntos
Biomarcadores , Pele , Humanos , Pele/patologia , Biópsia , Feminino , Masculino , Adulto , Biomarcadores/líquido cefalorraquidiano , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/genética , Pessoa de Meia-Idade , Adulto Jovem , Adolescente , Criança , Receptor de Fator Estimulador de Colônias de Macrófagos
7.
Autophagy ; : 1-16, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38802071

RESUMO

The selective removal of dysfunctional mitochondria, a process termed mitophagy, is critical for cellular health and impairments have been linked to aging, Parkinson disease, and other neurodegenerative conditions. A central mitophagy pathway is orchestrated by the ubiquitin (Ub) kinase PINK1 together with the E3 Ub ligase PRKN/Parkin. The decoration of damaged mitochondrial domains with phosphorylated Ub (p-S65-Ub) mediates their elimination though the autophagy system. As such p-S65-Ub has emerged as a highly specific and quantitative marker of mitochondrial damage with significant disease relevance. Existing p-S65-Ub antibodies have been successfully employed as research tools in a range of applications including western blot, immunocytochemistry, immunohistochemistry, and enzyme-linked immunosorbent assay. However, physiological levels of p-S65-Ub in the absence of exogenous stress are very low, therefore difficult to detect and require reliable and ultrasensitive methods. Here we generated and characterized a collection of novel recombinant, rabbit monoclonal p-S65-Ub antibodies with high specificity and affinity in certain applications that allow the field to better understand the molecular mechanisms and disease relevance of PINK1-PRKN signaling. These antibodies may also serve as novel diagnostic or prognostic tools to monitor mitochondrial damage in various clinical and pathological specimens.Abbreviations: AD: Alzheimer disease; CCCP: carbonyl cyanide 3-chlorophenylhydrazone; ELISA: enzyme-linked immunosorbent assay; HEK293E cell: human embryonic kidney E cell; ICC: immunocytochemistry; IHC: immunohistochemistry: KO: knockout; LoB: limit of blank; LoD: limit of detection; LoQ: limit of quantification; MEF: mouse embryonic fibroblast; MSD: Meso Scale Discovery; n.s.: non-significant; nonTg: non-transgenic; PBMC: peripheral blood mononuclear cell; PD: Parkinson disease; p-S65-PRKN: phosphorylated PRKN at serine 65; p-S65-Ub: phosphorylated Ub at serine 65; Ub: ubiquitin; WT: wild-type.

8.
Cell Stem Cell ; 31(5): 676-693.e10, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38626772

RESUMO

Frontotemporal dementia (FTD) is an incurable group of early-onset dementias that can be caused by the deposition of hyperphosphorylated tau in patient brains. However, the mechanisms leading to neurodegeneration remain largely unknown. Here, we combined single-cell analyses of FTD patient brains with a stem cell culture and transplantation model of FTD. We identified disease phenotypes in FTD neurons carrying the MAPT-N279K mutation, which were related to oxidative stress, oxidative phosphorylation, and neuroinflammation with an upregulation of the inflammation-associated protein osteopontin (OPN). Human FTD neurons survived less and elicited an increased microglial response after transplantation into the mouse forebrain, which we further characterized by single nucleus RNA sequencing of microdissected grafts. Notably, downregulation of OPN in engrafted FTD neurons resulted in improved engraftment and reduced microglial infiltration, indicating an immune-modulatory role of OPN in patient neurons, which may represent a potential therapeutic target in FTD.


Assuntos
Demência Frontotemporal , Neurônios , Osteopontina , Proteínas tau , Osteopontina/metabolismo , Osteopontina/genética , Demência Frontotemporal/genética , Demência Frontotemporal/patologia , Demência Frontotemporal/metabolismo , Humanos , Neurônios/metabolismo , Neurônios/patologia , Animais , Proteínas tau/metabolismo , Camundongos , Doenças Neuroinflamatórias/metabolismo , Doenças Neuroinflamatórias/patologia , Microglia/metabolismo , Microglia/patologia , Mutação/genética
9.
Neuroimage Clin ; 42: 103600, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38599001

RESUMO

Several genetic pathogenic variants increase the risk of Parkinson's disease (PD) with pathogenic variants in the leucine-rich repeat kinase 2 (LRRK2) gene being among the most common. A joint pattern analysis based on multi-set canonical correlation analysis (MCCA) was utilized to extract PD and LRRK2 pathogenic variant-specific spatial patterns in relation to healthy controls (HCs) from multi-tracer Positron Emission Tomography (PET) data. Spatial patterns were extracted for individual subject cohorts, as well as for pooled subject cohorts, to explore whether complementary spatial patterns of dopaminergic denervation are different in the asymptomatic and symptomatic stages of PD. The MCCA results are also compared to the traditional univariate analysis, which serves as a reference. We identified PD-induced spatial distribution alterations common to DAT and VMAT2 in both asymptomatic LRRK2 pathogenic variant carriers and PD subjects. The inclusion of HCs in the analysis demonstrated that the dominant common PD-induced pattern is related to an overall dopaminergic terminal density denervation, followed by asymmetry and rostro-caudal gradient with deficits in the less affected side still being the best marker of disease progression. The analysis was able to capture a trend towards PD-related patterns in the LRRK2 pathogenic variant carrier cohort with increasing age in line with the known increased risk of this patient cohort to develop PD as they age. The advantage of this method thus resides in its ability to identify not only regional differences in tracer binding between groups, but also common disease-related alterations in the spatial distribution patterns of tracer binding, thus potentially capturing more complex aspects of disease induced alterations.


Assuntos
Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina , Doença de Parkinson , Tomografia por Emissão de Pósitrons , Humanos , Doença de Parkinson/genética , Doença de Parkinson/diagnóstico por imagem , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Tomografia por Emissão de Pósitrons/métodos , Pessoa de Meia-Idade , Feminino , Masculino , Idoso , Adulto , Heterozigoto , Encéfalo/diagnóstico por imagem , Proteínas Vesiculares de Transporte de Monoamina/genética , Proteínas da Membrana Plasmática de Transporte de Dopamina/genética
10.
Mov Disord Clin Pract ; 11(3): 220-226, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38468536

RESUMO

BACKGROUND: Young-onset multiple system atrophy (YOMSA) is defined as the onset of multiple system atrophy (MSA) before the age of 40 years old. YOMSA is rare and there is much uncertainty of the phenotype and natural history in patients with YOMSA. OBJECTIVE: The objective is to evaluate the characteristics and disease course of patients with YOMSA. METHODS: We retrospectively reviewed medical records of patients with MSA who were evaluated at all Mayo Clinic sites from 1998 to 2021. We identified patients with YOMSA and evaluated clinical characteristics, autonomic function testing results, and disease course. RESULTS: Of 1496 patients with a diagnosis of clinically probable or clinically established MSA, 20 patients had YOMSA. The median age of onset was 39.1 (interquartile range [IQR] = 37.1, 40.1) years; 13 patients (65%) were male. MSA-parkinsonism was the most common subtype (65%). The median duration of symptom onset to YOMSA diagnosis was 4.9 (IQR = 3.7, 9) years. At the time of medical record review, 17 patients were deceased with a median survival of 8.3 (IQR = 7, 10.9) years. Univariate analysis showed that initial onset of autonomic failure predicted unfavorable survival (hazard ratio = 2.89, P = 0.04) compared to those who presented with motor impairment only at onset. At the time of YOMSA diagnosis, composite autonomic severity score was available in 19 patients with a median of 5 (IQR = 4, 6.5). CONCLUSIONS: YOMSA resembles MSA in most aspects including phenotype and prognosis, although the diagnosis is usually delayed. The presence of autonomic failure at symptom onset may be a poor predictor for survival.


Assuntos
Atrofia de Múltiplos Sistemas , Insuficiência Autonômica Pura , Humanos , Masculino , Adulto , Feminino , Atrofia de Múltiplos Sistemas/diagnóstico , Estudos Retrospectivos , Sistema Nervoso Autônomo , Prognóstico , Progressão da Doença
12.
Front Neurol ; 15: 1320663, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38529036

RESUMO

Introduction: Because adult-onset leukoencephalopathy with axonal spheroids and pigmented glia (ALSP) is a rare, rapidly progressive, debilitating, and ultimately fatal neurodegenerative disease, a rapid and accurate diagnosis is critical. This analysis examined the frequency of initial misdiagnosis of ALSP via comprehensive review of peer-reviewed published cases. Methods: Data were extracted from a MEDLINE search via PubMed (January 1, 1980, through March 22, 2022) from eligible published case reports/series for patients with an ALSP diagnosis that had been confirmed by testing for the colony-stimulating factor-1 receptor gene (CSF1R) mutation. Patient demographics, clinical symptoms, brain imaging, and initial diagnosis data were summarized descriptively. Categorical data for patient demographics, symptoms, and brain imaging were stratified by initial diagnosis category to test for differences in initial diagnosis based on each variable. Results: Data were extracted from a cohort of 291 patients with ALSP from 93 published case reports and case series. Mean (standard deviation) age of symptom onset was 43.2 (11.6) years. A family history of ALSP was observed in 59.1% of patients. Cognitive impairment (47.1%) and behavioral and psychiatric abnormalities (26.8%) were the most frequently reported initial symptoms. Of 291 total cases, an accurate initial diagnosis of ALSP was made in 72 cases (24.7%) and the most frequent initial misdiagnosis categories were frontotemporal dementia (28 [9.6%]) and multiple sclerosis (21 [7.2%]). Of the 219 cases (75.3%) that were initially mis- or undiagnosed, 206 cases (94.1%) were later confirmed as ALSP by immunohistology, imaging, and/or genetic testing; for the remaining 13 cases, no final diagnosis was reported. Initial diagnosis category varied based on age, family history, geographic region, mode of inheritance, and presenting symptoms of pyramidal or extrapyramidal motor dysfunction, behavioral and psychiatric abnormalities, cognitive impairment, and speech difficulty. Brain imaging abnormalities were common, and initial diagnosis category was significantly associated with white matter hyperintensities, white matter calcifications, and ventricular enlargement. Discussion: In this literature analysis, ALSP was frequently misdiagnosed. Improving awareness of this condition and distinguishing it from other conditions with overlapping presenting symptoms is important for timely management of a rapidly progressive disease such as ALSP.

13.
Acta Neuropathol ; 147(1): 54, 2024 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-38472443

RESUMO

Rare and common GBA variants are risk factors for both Parkinson's disease (PD) and dementia with Lewy bodies (DLB). However, the degree to which GBA variants are associated with neuropathological features in Lewy body disease (LBD) is unknown. Herein, we assessed 943 LBD cases and examined associations of 15 different neuropathological outcomes with common and rare GBA variants. Neuropathological outcomes included LBD subtype, presence of a high likelihood of clinical DLB (per consensus guidelines), LB counts in five cortical regions, tyrosine hydroxylase immunoreactivity in the dorsolateral and ventromedial putamen, ventrolateral substantia nigra neuronal loss, Braak neurofibrillary tangle (NFT) stage, Thal amyloid phase, phospho-ubiquitin (pS65-Ub) level, TDP-43 pathology, and vascular disease. Sequencing of GBA exons revealed a total of 42 different variants (4 common [MAF > 0.5%], 38 rare [MAF < 0.5%]) in our series, and 165 cases (17.5%) had a copy of the minor allele for ≥ 1 variant. In analysis of common variants, p.L483P was associated with a lower Braak NFT stage (OR = 0.10, P < 0.001). In gene-burden analysis, presence of the minor allele for any GBA variant was associated with increased odds of a high likelihood of DLB (OR = 2.00, P < 0.001), a lower Braak NFT stage (OR = 0.48, P < 0.001), a lower Thal amyloid phase (OR = 0.55, P < 0.001), and a lower pS65-Ub level (ß: -0.37, P < 0.001). Subgroup analysis revealed that GBA variants were most common in LBD cases with a combination of transitional/diffuse LBD and Braak NFT stage 0-II or Thal amyloid phase 0-1, and correspondingly that the aforementioned associations of GBA gene-burden with a decreased Braak NFT stage and Thal amyloid phase were observed only in transitional or diffuse LBD cases. Our results indicate that in LBD, GBA variants occur most frequently in cases with greater LB pathology and low AD pathology, further informing disease-risk associations of GBA in PD, PD dementia, and DLB.


Assuntos
Doença de Alzheimer , Doença por Corpos de Lewy , Doença de Parkinson , Humanos , Doença por Corpos de Lewy/patologia , Doença de Parkinson/patologia , Doença de Alzheimer/patologia , Substância Negra/patologia , Emaranhados Neurofibrilares/patologia
14.
J Neurosurg ; 141(1): 252-259, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38394660

RESUMO

OBJECTIVE: The aim of this study was to compare outcomes of direct targeting in deep brain stimulation (DBS) for essential tremor using 7T MRI versus 3T MRI. The authors hypothesized that 7T MRI direct targeting would be noninferior to 3T MRI in early tremor outcomes. METHODS: A retrospective study was conducted on patients undergoing unilateral thalamic DBS for essential tremor between 2021 and 2023. Two matched cohorts were assessed, one using 7T MRI and the other using 3T MRI for surgical planning. The primary endpoint was the percentage improvement in the Fahn-Tolosa-Marin Tremor Rating Scale (TRS) scores. Additionally, the authors assessed optimized programming settings and variance in electrode position on postoperative imaging. Demographic and clinical data were compared using the nonparametric Mann-Whitney U-test. The squared Euclidean distance of each contact from the group mean centroid was calculated and averaged across the entire cohort to provide the variance (i.e., the mean squared distance) of electrode contact position. RESULTS: A total of 34 patients were analyzed, with 17 in each cohort. There were no significant differences in demographic information or mean surgical dates between the groups. There were no differences in intraoperative target repositioning or adverse events. The 7T group had a significantly greater TRS improvement than the 3T group (64.9% ± 11.4% vs 50.9% ± 16.4%, p = 0.004). Patients in the 7T cohort also had a lower mean stimulation current compared with those in the 3T cohort (2.0 ± 0.8 mA vs 2.7 ± 0.9 mA, p = 0.01). Image evaluation revealed that although the mean electrode position was comparable between 7T and 3T, the 7T electrode positioning was more clustered, indicating a lower variance in the final electrode location. The mean Euclidean distance between the individual electrode tips and the group centroid was significantly less at 7T than at 3T (1.82 ± 0.68 mm vs 2.75 ± 0.81 mm, p = 0.001). CONCLUSIONS: Despite concerns for increased artifacts and distortions at 7T, the authors show that these effects can be mitigated with an appropriate workflow, leading to improved surgical outcomes with direct targeting using 7T MRI. Their results suggest similar accuracy but greater precision in targeting with 7T MRI compared with 3T MRI, resulting in lower stimulation currents and improved tremor reduction. Future studies are needed to assess outcomes related to 7T MRI in targeting other subcortical structures.


Assuntos
Estimulação Encefálica Profunda , Tremor Essencial , Imageamento por Ressonância Magnética , Humanos , Estimulação Encefálica Profunda/métodos , Tremor Essencial/terapia , Tremor Essencial/diagnóstico por imagem , Tremor Essencial/cirurgia , Masculino , Feminino , Imageamento por Ressonância Magnética/métodos , Estudos Retrospectivos , Pessoa de Meia-Idade , Idoso , Resultado do Tratamento , Tálamo/diagnóstico por imagem , Tálamo/cirurgia , Eletrodos Implantados
15.
bioRxiv ; 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38293184

RESUMO

Loss-of-function mutations in the genes encoding PINK1 and PRKN result in early-onset Parkinson disease (EOPD). Together the encoded enzymes direct a neuroprotective pathway that ensures the elimination of damaged mitochondria via autophagy. We performed a genome-wide high content imaging miRNA screen for inhibitors of the PINK1-PRKN pathway and identified all three members of the miRNA family 29 (miR-29). Using RNAseq we identified target genes and found that siRNA against ATG9A phenocopied the effects of miR-29 and inhibited the initiation of PINK1-PRKN mitophagy. Furthermore, we discovered two rare, potentially deleterious, missense variants (p.R631W and p.S828L) in our EOPD cohort and tested them experimentally in cells. While expression of wild-type ATG9A was able to rescue the effects of miR-29a, the EOPD-associated variants behaved like loss-of-function mutations. Together, our study validates miR-29 and its target gene ATG9A as novel regulators of mitophagy initiation. It further serves as proof-of-concept of finding novel, potentially disease-causing EOPD-linked variants specifically in mitophagy regulating genes. The nomination of genetic variants and biological pathways is important for the stratification and treatment of patients that suffer from devastating diseases, such as EOPD.

16.
Neurol Neurochir Pol ; 58(1): 38-46, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38175148

RESUMO

INTRODUCTION: Advances in sequencing technologies have enabled extensive genetic testing on an individual basis. Genome-wide association studies (GWAS) have provided insight into the pathophysiology of PD. Additionally, direct-to-consumer genetic testing has enabled the identification of genetic diseases and risk factors without genetic counselling. As genetics increasingly permeates clinical practice, this paper aims to summarise the most important information on genetics in PD forclinical practitioners. STATE-OF-THE-ART: LRRK2 mutations may be found in c.1% of all PD patients with an indistinguishable phenotype from sporadic PD. LRRK2-PD is more prevalent in patients with a positive family history (5-6%) and among certain populations (e.g. up to 41% in North Africans and Ashkenazi Jews). Other familial forms include PRKN (patients with early onset, EOPD), VPS35 (Western European ancestry), PINK1 (EOPD), DJ-1 (EOPD), and SNCA. GBA mutations are found in a large number of PD patients and are associated with faster progression and a poorer prognosis. GWAS have identified 90 genetic risk variants for developing PD and several genetic modifiers for the age at onset, disease progression, and response to treatment. CLINICAL IMPLICATIONS: Multigene panels using next-generation sequencing (NGS) are the first choice for genetic testing in clinical settings. Whole exome sequencing is increasingly being used, particularly as the second-tier testing in patients with negative results of multigene panels. NGS may not detect accurately copy number variants (CNV), meaning that additional analysis is warranted. In a case of a variant of unknown significance (VUS), we suggest firstly searching the up-to-date literature. Segregation studies and in silico predictions may shed more light on the character of the VUS; however, functional studies remain the gold standard. Several interventional clinical trials are active for carriers of LRRK2 and/or GBA mutations. FUTURE DIRECTIONS: Application of artificial intelligence and machine learning will enable high-throughput analysis of large sets of multimodal data. We speculate that, in the future, the treatment landscape for PD will be similar to that in oncological conditions, in which the presence of certain gene mutations or gene overexpression determines the prognosis and treatment decision-making.


Assuntos
Doença de Parkinson , Humanos , Doença de Parkinson/genética , Doença de Parkinson/diagnóstico , Estudo de Associação Genômica Ampla , Inteligência Artificial , Testes Genéticos , Mutação/genética , Predisposição Genética para Doença/genética
17.
bioRxiv ; 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38293125

RESUMO

The selective removal of dysfunctional mitochondria, a process termed mitophagy, is critical for cellular health and impairments have been linked to aging, Parkinson disease, and other neurodegenerative conditions. A central mitophagy pathway is orchestrated by the ubiquitin (Ub) kinase PINK1 together with the E3 Ub ligase PRKN/Parkin. The decoration of damaged mitochondrial domains with phosphorylated Ub (p-S65-Ub) mediates their elimination though the autophagy system. As such p-S65-Ub has emerged as a highly specific and quantitative marker of mitochondrial damage with significant disease relevance. Existing p-S65-Ub antibodies have been successfully employed as research tools in a range of applications including western blot, immunocytochemistry, immunohistochemistry, and ELISA. However, physiological levels of p-S65-Ub in the absence of exogenous stress are very low, therefore difficult to detect and require reliable and ultrasensitive methods. Here we generated and characterized a collection of novel recombinant, rabbit monoclonal p-S65-Ub antibodies with high specificity and affinity in certain applications that allow the field to better understand the molecular mechanisms and disease relevance of PINK1-PRKN signaling. These antibodies may also serve as novel diagnostic or prognostic tools to monitor mitochondrial damage in various clinical and pathological specimens.

19.
NPJ Parkinsons Dis ; 10(1): 13, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38191546

RESUMO

Parkinson's disease (PD) is a prevalent neurodegenerative disorder that presents a diagnostic challenge due to symptom overlap with other disorders. Neuromelanin (NM) imaging is a promising biomarker for PD, but adoption has been limited, in part due to subpar performance at standard MRI field strengths. We aimed to evaluate the diagnostic utility of ultra-high field 7T NM-sensitive imaging in the diagnosis of PD versus controls and essential tremor (ET), as well as NM differences among PD subtypes. A retrospective case-control study was conducted including PD patients, ET patients, and controls. 7T NM-sensitive 3D-GRE was acquired, and substantia nigra pars compacta (SNpc) volumes, contrast ratios, and asymmetry indices were calculated. Statistical analyses, including general linear models and ROC curves, were employed. Twenty-one PD patients, 13 ET patients, and 18 controls were assessed. PD patients exhibited significantly lower SNpc volumes compared to non-PD subjects. SNpc total volume showed 100% sensitivity and 96.8% specificity (AUC = 0.998) for differentiating PD from non-PD and 100% sensitivity and 95.2% specificity (AUC = 0.996) in differentiating PD from ET. Contrast ratio was not significantly different between PD and non-PD groups (p = 0.07). There was also significantly higher asymmetry index in SNpc volume in PD compared to non-PD cohorts (p < 0.001). NM signal loss in PD predominantly involved the inferior, posterior, and lateral aspects of SNpc. Akinetic-rigid subtype showed more significant NM signal loss compared to tremor dominant subtype (p < 0.001). 7T NM imaging demonstrates potential as a diagnostic tool for PD, including potential distinction between subtypes, allowing improved understanding of disease progression and subtype-related characteristics.

20.
Sci Transl Med ; 16(730): eadf9735, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38232138

RESUMO

Genetic variation at the transmembrane protein 106B gene (TMEM106B) has been linked to risk of frontotemporal lobar degeneration with TDP-43 inclusions (FTLD-TDP) through an unknown mechanism. We found that presence of the TMEM106B rs3173615 protective genotype was associated with longer survival after symptom onset in a postmortem FTLD-TDP cohort, suggesting a slower disease course. The seminal discovery that filaments derived from TMEM106B is a common feature in aging and, across a range of neurodegenerative disorders, suggests that genetic variants in TMEM106B could modulate disease risk and progression through modulating TMEM106B aggregation. To explore this possibility and assess the pathological relevance of TMEM106B accumulation, we generated a new antibody targeting the TMEM106B filament core sequence. Analysis of postmortem samples revealed that the TMEM106B rs3173615 risk allele was associated with higher TMEM106B core accumulation in patients with FTLD-TDP. In contrast, minimal TMEM106B core deposition was detected in carriers of the protective allele. Although the abundance of monomeric full-length TMEM106B was unchanged, carriers of the protective genotype exhibited an increase in dimeric full-length TMEM106B. Increased TMEM106B core deposition was also associated with enhanced TDP-43 dysfunction, and interactome data suggested a role for TMEM106B core filaments in impaired RNA transport, local translation, and endolysosomal function in FTLD-TDP. Overall, these findings suggest that prevention of TMEM106B core accumulation is central to the mechanism by which the TMEM106B protective haplotype reduces disease risk and slows progression.


Assuntos
Demência Frontotemporal , Humanos , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Demência Frontotemporal/genética , Demência Frontotemporal/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Polimorfismo de Nucleotídeo Único/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...