Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neuroreport ; 27(11): 858-63, 2016 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-27306591

RESUMO

Human enteric neural stem cells (hENSCs) proliferate and differentiate into neurons and glial cells in response to a complex network of neurotrophic factors to form the enteric nervous system. The primary aim of this study was to determine the effect of basic fibroblast growth factor (bFGF) and epidermal growth factor (EGF) on in-vitro expansion and differentiation of postnatal hENSCs-containing enteric neurosphere cells. Enteric neurosphere cells were isolated from rectal polyp specimens of 75 children (age, 1-13 years) and conditioned with bFGF, EGF, bFGF+EGF, or plain culture media. Proliferation of enteric neurosphere cells was examined using the methyl thiazolyl tetrazolium colorimetric assay over 7 days of culture. Fetal bovine serum (10%) was added to induce the differentiation of parental enteric neurosphere cells, and differentiated offspring cells were immunophenotyped against p75 neutrophin receptor (neural stem cells), peripherin (neuronal cells), and glial fibrillary acidic protein (glial cells). Combining bFGF and EGF significantly improved the proliferation of enteric neurosphere cells compared with bFGF or EGF alone (both P<0.01) throughout 7 days of culture. The addition of bFGF drove a significantly greater proportion of enteric neurosphere cells to differentiate into neuronal cells than that of EGF (P<0.01), whereas addition of EGF resulted in significantly more glial differentiation compared with addition of bFGF (P<0.01). Combining bFGF and EGF drove enteric neurosphere cells to differentiate into neuronal cells in a proportion similar to glial cells. Our results showed that the combination of bFGF and EGF significantly enhanced the proliferation and differentiation of postnatal hENSCs-containing enteric neurosphere cells in vitro.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Sistema Nervoso Entérico/citologia , Fator de Crescimento Epidérmico/farmacologia , Proteína Glial Fibrilar Ácida/farmacologia , Células-Tronco Neurais/efeitos dos fármacos , Neuroglia/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Adolescente , Proliferação de Células/efeitos dos fármacos , Criança , Pré-Escolar , Colorimetria , Feminino , Humanos , Lactente , Masculino , Proteínas do Tecido Nervoso/metabolismo , Neuroglia/metabolismo , Neurônios/metabolismo , Receptores de Fator de Crescimento Neural/metabolismo
2.
PLoS One ; 9(7): e101362, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24988081

RESUMO

AIMS: Fargesia decurvata is closely allied with F. dracocephala and differs in 5 major characters (i.e. the culm sheath blade base shape, the width of the culm sheath blade base, the auricle shape, and the lower surface of leaf blade) in Fargesia. It is difficult to distinguish these two species because of existing of transitional statements of characters. The aims of this paper are to (i) investigate whether the variation of the characters is continuous or not; (ii) reveal whether the publishment of F. dracocephala was the result of discontinuous sampling of F. decurvata or not. METHODS: Ten populations of F. decurvata and F. dracocephala were investigated in their entire distribution (including type localities). The statements of 5 major characters were measured from 693 annual and 693 perennial culms of 231 individuals in 10 populations, and analyzed at population, individual and culm levels. UPGMA cluster analysis was carried out based on 29 characters from 10 populations of F. decurvata and F. dracocephala and 2 populations of F. qinlingensis as outgroup. The ITS sequences were also sequenced and analyzed. IMPORTANT FINDINGS: Five major characters exhibited great variation not only at population level, but at individual level within a population, even the culm level within an individual and in different parts of the same culm. Cluster analyses showed that 10 populations of F. decurvata and F. dracocephala were not divided into two species, but they were well separated with outgroup. There was no difference in floral organ between F. decurvata and F. dracocephala. MP and NJ trees based on ITS sequences showed the same results with the cluster analysis on morphological characters. All the facts indicated that the publishment of F. dracocephala was the result of discontinuous sampling of F. decurvata, and F. dracocephala should be treated as the synonym of F. decurvata.


Assuntos
Poaceae/anatomia & histologia , Poaceae/genética , Análise por Conglomerados , DNA de Plantas/genética , DNA Espaçador Ribossômico/genética , Folhas de Planta/anatomia & histologia , Folhas de Planta/classificação , Folhas de Planta/genética , Poaceae/classificação , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...