Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Huan Jing Ke Xue ; 45(5): 2828-2839, 2024 May 08.
Artigo em Chinês | MEDLINE | ID: mdl-38629545

RESUMO

It is of great practical significance for regional sustainable development and ecological construction to quantitatively analyze the impact of construction land expansion on terrestrial ecosystem carbon storage and to explore the optimization scheme of simulating construction land expansion to improve future ecosystem carbon storage. Based on the land use and cover change (LUCC) and other geospatial data of the Beijing-Tianjin-Hebei Urban Agglomeration from 2000 to 2020, this study utilized the Integrated Valuation of Ecosystem Services and Tradeoffs (InVEST) model and the patch-generating land-use simulation (PLUS) model to assess and analyze the changes in ecosystem carbon stocks and spatial patterns regionally. In this study, we performed linear regression analysis to investigate the relationship between urban land expansion and changes in ecosystem carbon stocks for varying urban land proportion levels during two distinct time intervals, 2000-2010 and 2010-2020, which was conducted at a spatial resolution of 2 km. Three distinct urban land expansion scenarios were subjected to simulation to forecast the prospective land use pattern by 2030. Subsequently, we quantified the ramifications of these scenarios on ecosystem carbon stocks during the period from 2020 to 2030. The results were as follows:① In the Beijing-Tianjin-Hebei Urban Agglomeration, the ecosystem carbon stocks exhibited notable variations over the study period, with values of 2 088.02, 2 106.78, and 2 121.25 Tg recorded for the years 2000, 2010, and 2020, respectively, resulting in a cumulative carbon sequestration of 33.23 Tg C during the study duration. It is noteworthy that forest carbon storage emerged as the dominant contributor, with an increase from 1 010.17 Tg in 2000 to 1 136.53 Tg in 2020. Throughout the study period, the spatial distribution of carbon stocks displayed relative stability. Regions characterized by lower carbon content were concentrated in the vicinity of the Bohai Rim region and in proximity to cities such as Beijing, Tianjin, and Shijiazhuang, as well as rural settlements. In contrast, grid units with moderate and high carbon stocks were predominantly situated in the western Taihang Mountain and the northern Yanshan Mountain. Additionally, there was a tendency of increasing carbon stocks in the Taihang Mountain and Yanshan Mountain region, whereas those surrounding major urban centers such as Beijing, Tianjin, Shijiazhuang, and Tangshan experienced a notable decline in carbon stocks. Such reductions were most pronounced in regions undergoing urban land expansion during the study period. ② In grid units with an urban land proportion exceeding 10% at each level, a strong correlation was observed between urban land expansion and changes in carbon stocks during both the 2000-2010 and 2010-2020 periods. The changes in urban land proportion adequately explained the variations in carbon stocks. However, the explanatory power of urban land on carbon stocks decreased during the 2010-2020 period, indicating that other factors played a more substantial role in influencing carbon stocks during this time. The regression coefficients for both periods exhibited a fluctuating upward trend. In comparison to that during the 2000-2010 period, the impact of urban land expansion on carbon stocks was relatively smaller during 2010-2020, indicating a weakening influence. ③ In light of three distinct development scenarios, namely natural development (Scenario Ⅰ), a 15% reduction in the rate of urban land expansion (Scenario Ⅱ), and a 30% reduction in the rate of urban land expansion (Scenario Ⅲ), the projected ecosystem carbon stocks for the Beijing-Tianjin-Hebei Urban Agglomeration in the year 2030 were estimated to be 2 129.12, 2 133.55, and 2 139.10 Tg, respectively. These projections indicated an increase of 7.88, 12.30, and 17.85 Tg in comparison to the current carbon stocks. All scenarios demonstrated that the terrestrial ecosystem would play a role of carbon sink, particularly with the greatest carbon sink observed in the scenario with a 30% reduction in urban land expansion. The fit performance between urban land expansion and carbon stock changes during the 2020-2030 period was significantly better than that during the 2000-2010 and 2010-2020 periods, and the regression coefficients showed a fluctuating increase with an increase in urban land proportion. Across grid units with different urban land proportion levels, the regression coefficients exhibited the order of Scenario Ⅰ < Scenario Ⅱ < Scenario Ⅲ. In pursuit of the carbon peaking and carbon neutrality goals, the Beijing-Tianjin-Hebei Urban Agglomeration should prioritize scenarios with reduced rates of urban land expansion, especially in regions with higher urban land proportions.

2.
J Org Chem ; 88(13): 8034-8041, 2023 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-37319302

RESUMO

A tandem reaction for the synthesis of phenanthrenes from arynes and α-(bromomethyl)styrenes is reported. The transformation proceeds via an ene reaction of α-(bromomethyl)styrenes with arynes, followed by a [4 + 2] cycloaddition reaction. The reaction generates 9-benzylphenanthrene derivatives in moderate to excellent yields.


Assuntos
Fenantrenos , Estirenos , Reação de Cicloadição , Ciclização
3.
RSC Adv ; 12(51): 33260-33263, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36425163

RESUMO

A transition-metal-free intramolecular redox cyclization reaction for the synthesis of cinnolines has been developed from 2-nitrobenzyl alcohol and benzylamine. Mechanistic investigations disclosed the involvement of a key intramolecular redox reaction, followed by condensation, azo isomerization to hydrazone, cyclization, and aromatization to form the desired products. Notably, the formation of intermediate 2-nitrosobenzaldehyde and (E)-2-(2-benzylidenehydrazineyl) benzaldehyde plays an important role in this transformation.

4.
Arch Med Res ; 52(5): 461-470, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33551225

RESUMO

OBJECTIVE: This research was designed to investigate the function of miR-1275 in hypoxia/reoxygenation (H/R)-induced myocardial injury and its in-depth mechanism. METHODS: Firstly, the differential expression of miR-1275 in patients with heart failure and healthy control were analyzed based on Gene Expression Omnibus (GEO) database. Then H/R model was constructed in vitro with AC16 cells. The qRT-PCR assay was performed to analyze the expression of miR-1275 in H/R-treated cells. Afterwards, CCK-8 assay and flow cytometry assay were carried out to detect the cells viability and apoptosis. Bioinformatics prediction, western blotting and dual-luciferase reporter assays were set to check the target gene of miR-1275. Finally, we used an Elisa to test the effect of miR-1275/HK2 axis on inflammatory factors. RESULTS: We found that miR-1275 was highly expressed in patients with heart failure and H/R treated AC16 cells than that in control group, and inhibition of miR-1275 can alleviate induced-decrease of cell viability. Subsequently, we revealed that HK2 was a downstream target gene of miR-1275, which was lowly expressed in patients with heart failure. Furthermore, our data also suggested that inhibition of miR-1275 can significantly alleviate H/R-induced myocardial injury, which can also markedly decrease the concentration of pro-inflammatory factors TNF-α, IL-1 ß and increase the concentration of anti-inflammatory factors IL-10 in H/R-treated AC16 cells, while knockdown of HK2 canceled the effect caused by miR-1275 deletion. CONCLUSIONS: In summing, our results illustrated that miR-1275/HK2 axis act as a potential regulator to against H/R-induced AC16 cells injury through anti-inflammatory effect.


Assuntos
Insuficiência Cardíaca/fisiopatologia , Hipóxia , MicroRNAs , Apoptose , Hipóxia Celular , Linhagem Celular , Insuficiência Cardíaca/genética , Humanos , Hipóxia/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Miócitos Cardíacos/metabolismo
5.
RSC Adv ; 11(47): 29632-29660, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35479541

RESUMO

Cadmium is a heavy metal which exists widely in industrial and agricultural production and can induce a variety of diseases in organisms. Therefore, its detection is of great significance in the fields of biology, environment and medicine. Fluorescent probe has been a powerful tool for cadmium detection because of its convenience, sensitivity, and bioimaging capability. In this paper, we reviewed 98 literatures on cadmium fluorescent sensors reported from 2017 to 2021, classified them according to different fluorophores, elaborated the probe design, application characteristics and recognition mode, summarized and prospected the development of cadmium fluorescent and colorimetric probes. We hope to provide some help for researchers to design cadmium fluorescent probes with higher selectivity, sensitivity and practicability.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...