Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
iScience ; 27(5): 109510, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38660406

RESUMO

Myocardial ischemia-reperfusion (I/R) injury stands out among cardiovascular diseases, and current treatments are considered unsatisfactory. For cardiomyocytes (CMs) in ischemic tissues, the upregulation of Limb-bud and Heart (LBH) and αB-crystallin (CRYAB) and their subsequent downregulation in the context of cardiac fibrosis have been verified in our previous research. Here, we focused on the effects and mechanisms of activated LBH-CRYAB signaling on damaged CMs during I/R injury, and confirmed the occurrence of mitochondrial apoptosis and ferroptosis during I/R injury. The application of inhibitors, ectopic expression vectors, and knockout mouse models uniformly verified the role of LBH in alleviating both apoptosis and ferroptosis of CMs. p53 was identified as a mutual downstream effector for both LBH-CRYAB-modulated apoptosis and ferroptosis inhibition. In mouse models, LBH overexpression was confirmed to exert enhanced cardiac protection against I/R-induced apoptosis and ferroptosis, suggesting that LBH could serve as a promising target for the development of I/R therapy.

2.
J Neuroinflammation ; 20(1): 283, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38012702

RESUMO

As one of most common and severe mental disorders, major depressive disorder (MDD) significantly increases the risks of premature death and other medical conditions for patients. Neuroinflammation is the abnormal immune response in the brain, and its correlation with MDD is receiving increasing attention. Neuroinflammation has been reported to be involved in MDD through distinct neurobiological mechanisms, among which the dysregulation of neurogenesis in the dentate gyrus (DG) of the hippocampus (HPC) is receiving increasing attention. The DG of the hippocampus is one of two niches for neurogenesis in the adult mammalian brain, and neurotrophic factors are fundamental regulators of this neurogenesis process. The reported cell types involved in mediating neuroinflammation include microglia, astrocytes, oligodendrocytes, meningeal leukocytes, and peripheral immune cells which selectively penetrate the blood-brain barrier and infiltrate into inflammatory regions. This review summarizes the functions of the hippocampus affected by neuroinflammation during MDD progression and the corresponding influences on the memory of MDD patients and model animals.


Assuntos
Transtorno Depressivo Maior , Adulto , Animais , Humanos , Transtorno Depressivo Maior/metabolismo , Depressão , Doenças Neuroinflamatórias , Hipocampo/metabolismo , Neurogênese/fisiologia , Mamíferos
3.
Int J Biochem Cell Biol ; 157: 106385, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36754160

RESUMO

α-Synuclein phosphorylation and mitochondrial calcium homeostasis are important mechanisms underlying mitochondrial dysfunction in Parkinson's disease, but the network regulating these mechanisms remains unclear. We identified the role of key phosphokinases and the pathological effects of α-synuclein phosphorylation on mitochondrial calcium influx and mitochondrial function in Parkinson's disease. The function of the key phosphokinase, calcium/calmodulin-dependent serine protein kinase, was investigated through loss- and gain-of-function experiments using a cell model of Parkinson's disease. The regulation of mitochondrial calcium uniporter-mediated mitochondrial calcium influx by calcium/calmodulin-dependent serine protein kinase was explored using a cellular model of Parkinson's disease. Coimmunoprecipitation experiments and α-synuclein mutation were used to explore the mechanism through which calcium/calmodulin-dependent serine protein kinase regulates mitochondrial calcium uniporter-mediated mitochondrial calcium influx and exacerbates mitochondrial damage in Parkinson's disease. Here, we show the pathogenic role of calcium/calmodulin-dependent serine protein kinase in Parkinson's disease progression. Calcium/calmodulin-dependent serine protein kinase phosphorylated α-synuclein to activate mitochondrial calcium uniporter and thus increase mitochondrial calcium influx, and these effects were blocked by α-synuclein S129A mutant expression. Furthermore, the calcium/calmodulin-dependent serine protein kinase inhibitor CASK-IN-1 exerted neuroprotective effects in Parkinson's disease. Collectively, our results suggest that calcium/calmodulin-dependent serine protein kinase phosphorylates α-synuclein to activate the mitochondrial calcium uniporter and thereby causes mitochondrial calcium overload and mitochondrial damage in Parkinson's disease. We elucidated a new role of calcium/calmodulin-dependent serine protein kinase in Parkinson's disease and revealed the potential therapeutic value of targeting calcium/calmodulin-dependent serine protein kinase in Parkinson's disease treatment.


Assuntos
Doença de Parkinson , Humanos , Doença de Parkinson/metabolismo , alfa-Sinucleína , Calmodulina/metabolismo , Cálcio/metabolismo , Proteínas Quinases/metabolismo , Serina
4.
Mediators Inflamm ; 2022: 8939449, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36110098

RESUMO

The activation of cardiac fibroblasts (CFs) after myocardial infarction (MI) is essential for post-MI infarct healing, during which the regulation of transforming growth factor beta1 (TGF-ß1) signaling is predominant. We have demonstrated that TGF-ß1-mediated upregulation of LBH contributes to post-MI CF activation via modulating αB-crystallin (CRYAB), after being upregulated by TGF-ß1. In this study, the effect of LBH-CRYAB signaling on the cardiac microenvironment via exosome communication and the corresponding mechanisms were investigated. The upregulation of LBH and CRYAB was verified in both cardiomyocytes (CMs) and CFs in hypoxic, post-MI peri-infarct tissues. CM-derived exosomes were isolated and identified, and LBH distribution was elevated in exosomes derived from LBH-upregulated CMs under hypoxia. Treatment with LBH+ exosomes promoted cellular proliferation, differentiation, and epithelial-mesenchymal transition-like processes in CFs. Additionally, in primary LBHKO CFs, western blotting showed that LBH knockout partially inhibited TGF-ß1-induced CF activation, while LBH-CRYAB signaling affected TGF-ß1 expression and secretion through a positive feedback loop. The administration of a Smad3 phosphorylation inhibitor to LBHKO CFs under TGF-ß1 stimulation indicated that Smad3 phosphorylation partially accounted for TGF-ß1-induced LBH upregulation. In conclusion, LBH upregulation in CMs in post-MI peri-infarct areas correlated with a hypoxic cardiac microenvironment and led to elevated exosomal LBH levels, promoting the activation of recipient CFs, which brings new insights into the studies and therapeutic strategies of post-MI cardiac repair.


Assuntos
Cristalinas , Exossomos , Infarto do Miocárdio , Animais , Cristalinas/metabolismo , Cristalinas/farmacologia , Exossomos/metabolismo , Fibroblastos/metabolismo , Hipóxia/metabolismo , Infarto do Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Fatores de Transcrição/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Regulação para Cima
5.
Int J Biol Sci ; 18(1): 242-260, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34975330

RESUMO

The limb-bud and heart (LBH) gene was reported to suppress nasopharyngeal carcinoma (NPC) progression in our previous study. Distant metastasis predominantly accounts for the unsatisfactory prognosis of NPC treatment, in which epithelial-mesenchymal transition (EMT) and tumor angiogenesis are of great significance. The roles of exosomes in mediating NPC progression have been highlighted in recent researches, and attempts have been made to explore the clinical application of NPC exosomes. Here we investigated the function of the LBH gene in NPC exosomes, and its potential mechanism. NPC xenografts were constructed, showing that vascular endothelial growth factor A (VEGFA) expression and neovascularity were attenuated by LBH overexpression, together with diminished EMT progression. NPC-derived exosomes were isolated, identified and applied for in vitro/in vivo experiments, and the exosomal distribution of LBH was elevated in exosomes derived from LBH-upregulated cells. Ectopic LBH, αB-crystallin (CRYAB) and VEGFA expression was induced by lentiviral infection or plasmid transfection to explore their functions in modulating EMT and angiogenesis in NPC. The addition of LBH+ NPC exosomes during a Matrigel plug assay in mice suppressed in vivo angiogenesis, and the treatment of human umbilical vein endothelial cells (HUVECs) with LBH+ NPC exosomes inhibited cellular proliferation, migration and tube formation. The interactions among LBH, CRYAB and VEGFA were confirmed by colocalization and fluorescence resonance energy transfer (FRET) assays, and extracellular VEGFA secretion from both HUVECs and NPC cells under the treatment with LBH+ NPC exosomes was diminished according to ELISA results. We concluded that exosomal LBH inhibits EMT progression and angiogenesis in the NPC microenvironment, and that its effects are partially implemented by modulation of VEGFA expression, secretion and related signaling. Thus, LBH could serve as a promising therapeutic target in VEGFA-focused NPC treatment.


Assuntos
Indutores da Angiogênese/metabolismo , Transição Epitelial-Mesenquimal , Exossomos/metabolismo , Carcinoma Nasofaríngeo/metabolismo , Neoplasias Nasofaríngeas/metabolismo , Fatores de Transcrição/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Animais , Linhagem Celular Tumoral , Progressão da Doença , Regulação para Baixo , Exossomos/genética , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Carcinoma Nasofaríngeo/genética , Neoplasias Nasofaríngeas/genética , Fatores de Transcrição/genética , Regulação para Cima , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Int J Biochem Cell Biol ; 141: 106091, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34624508

RESUMO

OBJECTIVES: Insulin-like growth factor-1 (IGF-1) and bone morphogenetic protein 2 (BMP-2) both promote osteogenesis of bone marrow mesenchymal stem cells (BMSCs). IGF-1C, the C domain peptide of IGF-1, and P24, a BMP-2-derived peptide, both have similar biological activities as their parent growth factors. This study aimed to investigate the effects and mechanisms of polypeptides IGF-1C and P24 on the osteogenic differentiation of BMSCs. METHODS: The optimum concentrations of IGF-IC and P24 were explored. The effects of the two polypeptides on BMSC proliferation and osteogenic differentiation were examined using a CCK-8 assay, flow cytometry, alkaline phosphatase (ALP) staining, ALP activity assay, alizarin red S staining, qPCR, and Western blotting. In addition, specific pathway inhibitors were utilized to explore whether the p38 and JNK pathways were involved in this process. RESULTS: The optimal concentration of both polypeptides was 50 µg/ml. IGF-1C and P24 synergistically promoted BMSC proliferation, increased ALP activity and calcified nodule formation, upregulated the mRNA and protein levels of Osx, Runx2, Ocn, Opn, and Col1a1, and improved the phosphorylation levels of p38 and JNK proteins. Inhibition of the pathways significantly reduced p38 and JNK activation and blocked Runx2 expression while inhibiting ALP activity and calcified nodule formation. CONCLUSIONS: These findings suggest that IGF-1C and P24 synergistically promote the osteogenesis of BMSCs through activation of the p38 and JNK signaling pathways.


Assuntos
Sistema de Sinalização das MAP Quinases , Osteogênese , Proteína Morfogenética Óssea 2 , Diferenciação Celular , Células-Tronco Mesenquimais
7.
Cell Signal ; 85: 110045, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34000384

RESUMO

Limb-bud and heart (LBH) gene has received increasing attention in recent cancer studies. Here we investigated the role of the LBH gene in regulating the metastasis capacity and epithelial-mesenchymal transition (EMT) of nasopharyngeal carcinoma (NPC) cells, and its potential mechanism. The expressions of LBH and αB-crystallin (CRYAB) were modulated by lentiviral infection, or plasmid/siRNA transfection, and the phosphorylation of p38 was suppressed by an inhibitor, to explore their functions in modulating NPC cell phenotypes, as well as the relationships of these factors with each other. Cellular proliferation, migration and invasion were examined by RTCA system, Transwell assays and Matrigel Transwell assays respectively. The EMT progression was indicated by RT-qPCR and Western blotting measuring the expressions of EMT biomarkers. NPC xenografts were constrcucted, and formed tumors were sectioned for morphology and immunohistofluorescence. The interaction between LBH and CRYAB was examined by colocalization and Fluorescence resonance energy transfer (FRET) analysis. We reached the conclusion that LBH inhibits the proliferation, migration, invasion and EMT of NPC cells, and its effects were partially achieved by suppressing p38 phosphorylation, which subsequently downregulates the mRNA expression and phosphorylation of CRYAB, while CRYAB directly interacts with LBH in NPC cells. This LBH-related pathway we revealed provides a novel therapeutic target for nasopharyngeal carcinoma research.


Assuntos
Cristalinas , Neoplasias Nasofaríngeas , Animais , Linhagem Celular Tumoral , Movimento Celular/genética , Cristalinas/genética , Cristalinas/metabolismo , Transição Epitelial-Mesenquimal/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Carcinoma Nasofaríngeo/patologia , Neoplasias Nasofaríngeas/genética , Neoplasias Nasofaríngeas/patologia , Invasividade Neoplásica/genética , Fatores de Transcrição/metabolismo , Cadeia B de alfa-Cristalina
8.
Mol Cell Biochem ; 476(7): 2685-2701, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33666830

RESUMO

Cardiac fibrosis is an important pathological change after myocardial infarction (MI). Its progression is essential for post-MI infarct healing, during which transforming growth factor beta1 (TGF-ß1) plays a critical role. Limb-bud and Heart (LBH), a newly discovered target gene of TGF-ß1, was shown to promote normal cardiogenesis. αB-crystallin (CRYAB), an LBH-interacting protein, was demonstrated to be involved in TGF-ß1-induced fibrosis. The roles and molecular mechanisms of LBH and CRYAB during cardiac fibrosis remain largely unexplored. In this study, we investigated the alterations of LBH and CRYAB expression in mouse cardiac tissue after MI. LBH and CRYAB were upregulated in activated cardiac fibroblasts (CFs), while in vitro TGF-ß1 stimulation induced the upregulation of LBH, CRYAB, and fibrogenic genes in primary CFs of neonatal rats. The results of the ectopic expression of LBH proved that LBH accelerated CF proliferation under hypoxia, mediated the expression of CRYAB and fibrogenic genes, and promoted epithelial-mesenchymal transition (EMT)-like processes in rat CFs, while subsequent CRYAB silencing reversed the effects induced by elevated LBH expression. We also verified the protein-protein interaction (PPI) between LBH and CRYAB in fibroblasts. In summary, our work demonstrated that LBH promotes the proliferation of CFs, mediates TGF-ß1-induced fibroblast-to-myofibroblast transition and EMT-like processes through CRYAB upregulation, jointly functioning in post-MI infarct healing. These findings suggest that LBH could be a promising potential target for the study of cardiac repair and cardiac fibrosis.


Assuntos
Transição Epitelial-Mesenquimal , Regulação da Expressão Gênica , Infarto do Miocárdio/metabolismo , Miocárdio/metabolismo , Miofibroblastos/metabolismo , Fatores de Transcrição/metabolismo , Animais , Fibrose , Infarto do Miocárdio/patologia , Miofibroblastos/patologia , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...