Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Mol Neurosci ; 66(1): 44-52, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30209688

RESUMO

Acid-sensing ion channel 3 (ASIC3) is abundant in the trigeminal nervous system and is most sensitive to a slight pH decrease. Recent studies have indicated that ASIC3 in the peripheral trigeminal ganglia is likely involved in the pathogenesis of migraine pain. However, it is unclear whether this receptor plays a role in recurrent migraine, namely, migraine chronicity. Here, we aimed to investigate the role of ASIC3 in an animal model of recurrent migraine (RM). In this study, we established a rat model of RM through repeated administration of inflammatory soup (IS) onto the dura. Then, we tested the mechanical pain thresholds of the face and hindpaws by von Frey filaments. qRT-PCR, Western blot and immunofluorescence labelling were used to detect the expression and localization of ASIC3 in the trigeminal nucleus caudalis (TNC). The protein levels of calcitonin gene-related peptide (CGRP), its receptor component receptor activity modifying protein 1 (RAMP1) and c-Fos were analysed following treatment with the ASIC3 inhibitor APETx2 and activator 2-guanidine-4-methylquinazoline (GMQ). We found decreased pain thresholds after repeated dural inflammatory stimulation, which suggested the establishment of an RM model. Based on this model, we observed elevated expression of ASIC3 in the TNC group compared to that in the Sham group. ASIC3 was primarily expressed in neurons but not in astrocytes of the TNC. Moreover, APETx2 attenuated tactile allodynia and significantly decreased the expression of c-Fos, CGRP and RAMP1, while GMQ aggravated these effects compared to those observed in the IS + vehicle group. These findings indicate a critical role of ASIC3 channels in the pathophysiology of RM, and ASIC3 might represent a potential therapeutic target to prevent the progression of migraine.


Assuntos
Canais Iônicos Sensíveis a Ácido/genética , Transtornos de Enxaqueca/metabolismo , Núcleo Inferior Caudal do Nervo Trigêmeo/metabolismo , Canais Iônicos Sensíveis a Ácido/metabolismo , Animais , Peptídeo Relacionado com Gene de Calcitonina/genética , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Masculino , Transtornos de Enxaqueca/etiologia , Limiar da Dor , Ratos , Ratos Sprague-Dawley , Proteína 1 Modificadora da Atividade de Receptores/genética , Proteína 1 Modificadora da Atividade de Receptores/metabolismo
2.
Neural Regen Res ; 11(3): 454-9, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27127485

RESUMO

Tetrandrine is one of the major active ingredients in Menispermaceae Stephania tetrandra S. Moore, and has specific therapeutic effects in ischemic cerebrovascular disease. Its use in vascular dementia has not been studied fully. Here, we investigated whether tetrandrine would improve behavioral and cellular impairments in a two-vessel occlusion rat model of chronic vascular dementia. Eight weeks after model establishment, rats were injected intraperitoneally with 10 or 30 mg/kg tetrandrine every other day for 4 weeks. Behavioral assessment in the Morris water maze showed that model rats had longer escape latencies in training trials, and spent less time swimming in the target quadrant in probe trials, than sham-operated rats. However, rats that had received tetrandrine showed shorter escape latencies and longer target quadrant swimming time than untreated model rats. Hematoxylin-eosin and Nissl staining revealed less neuronal necrosis and pathological damage, and more living cells, in the hippocampus of rats treated with tetrandrine than in untreated model rats. Western blot assay showed that interleukin-1ß expression, and phosphorylation of the N-methyl-D-aspartate 2B receptor at tyrosine 1472, were lower in model rats that received tetrandrine than in those that did not. The present findings suggest that tetrandrine may be neuroprotective in chronic vascular dementia by reducing interleukin-1ß expression, N-methyl-D-aspartate receptor 2B phosphorylation at tyrosine 1472, and neuronal necrosis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...