Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 30(12): 20389-20400, 2022 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-36224785

RESUMO

Airy beams exhibit intriguing characteristics, such as diffraction-free propagation, self-acceleration, and self-healing, which have aroused great research interest. However, the spatial light modulator that generates Airy beams has problems such as narrow operational bandwidth, high cost, poor phase discretization, and single realization function. In the visible region (λ∼532 nm), we proposed a switchable all-dielectric metasurface for generating transmissive and reflective two-dimensional (2D) Airy beams. The metasurface was mainly composed of titanium dioxide nanopillars and vanadium dioxide substrate. Based on the Pancharatnam-Berry phase principle, a high-efficient Airy beam can be generated by controlling the phase transition of vanadium dioxide and changing the polarization state of the incident light. The optimized optical intensity conversion efficiencies of the transmissive and reflective metasurfaces were as high as 97% and 70%, respectively. In the field of biomedical and applied physics, our designed switchable metasurface is expected to offer the possibility of creating compact optical and photonic platforms for efficient generation and dynamic modulation of optical beams and open up a novel path for the application of high-resolution optical imaging systems.

2.
Nanomaterials (Basel) ; 11(10)2021 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-34685078

RESUMO

In this paper, two polarization-insensitive Gallium Nitride (GaN) metasurfaces based on a dynamic phase for adjusting the wavefront are proposed. Specifically, we obtained the target phase to satisfy some design conditions by changing the structural parameters at the nanoscales. Under the irradiation of linearly polarized (LP) light and circularly polarized (CP) light, respectively, one of the metasurfaces can generate a focused beam with an efficiency of 84.7%, and the other can generate a vortex beam with a maximum efficiency of 76.6%. Our designed metasurfaces will have important applications in optical communication, holographic projection, and particle capture.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...