Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Ecol Evol ; 14(5): e11459, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38774145

RESUMO

Plant invasions severely threaten natural ecosystems, and invasive plants often outcompete native plants across various ecosystems. Arbuscular mycorrhizal (AM) fungi, serving as beneficial microorganisms for host plants, can greatly influence the competitive outcomes of invasive plants against native plants. However, it remains unclear how AM fungi alter the competitive balance between native and invasive species. A competitive experiment was conducted using an invasive Eupatorium adenophorum paired with a native congener Eupatorium lindleyanum. Specifically, both species were inoculated with (M+) or without (M-) the fungus Glomus etunicatum under intraspecific (Intra-) and interspecific (Inter-) competition. Plant traits were measured and analyzed regarding the growth and nutrition of both species. The results exhibited that the AM fungus significantly increased the height, diameter, biomass, C, N, and P acquisition of both the invasive E. adenophorum and the native E. lindleyanum. The root mycorrhizal colonization and the mycorrhizal dependency of native E. lindleyanum were greater than those of invasive E. adenophorum. Under M+, the Inter-competition inhibited the growth and nutrition of invasive E. adenophorum compared to the Intra- competition. Further, native E. lindleyanum exhibited higher competitiveness than invasive E. adenophorum in growth and nutrition. Meanwhile, the AM fungus significantly improved the competitiveness of native E. lindleyanum over invasive E. adenophorum. In conclusion, AM fungus improved the competitive advantage of native E. lindleyanum over invasive E. adenophorum in growth and nutrition, potentially contributing to native species competitively resisting the invasion of exotic species. These findings emphasize the importance of AM fungi in helping native plants resist the invasion of exotic plants and further contribute to understanding plant invasion prevention mechanisms.

2.
Environ Sci Pollut Res Int ; 30(33): 80496-80511, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37300731

RESUMO

Arbuscular mycorrhizal (AM) fungi can affect plant growth by regulating competition. Nutrient-deficient karst habitats contain abundant plants that compete for nutrients through interspecific or intraspecific competition, involving the nutritional transformation of litter decomposition. However, how plant competition in the presence of AM fungi and litter affects root development and nutrition remains unclear. A potted experiment was conducted, including AM fungus treatment with or without Glomus etunicatum, the competition treatment concerning intraspecific or interspecific competition through planting Broussonetia papyrifera and Carpinus pubescens seedlings, and the litter treatment with or without the mixture of B. papyrifera and C. pubescens litter leaves. The root morphological traits were analyzed, and nitrogen (N), phosphorus (P), and potassium (K) were measured. The results showed that AM fungus differently affected the root morphological development and nutrition of both competitive plants, significantly promoting B. papyrifera roots in the increase of dry weight, length, volume, surface area, tips, and branches as well as N, P, and K acquisitions regardless of litter addition. However, there was no apparent influence for C. pubescens roots, except for the diameter in the interspecific competition with litter. The root dry weight, length, volume, surface area, and tips of B. papyrifera under two competitive styles were significantly greater than C. pubescens regulated by AM fungus, presenting significant species differences. The responses of the relative competition intensity (RCI) on root morphological and nutritional traits indicated that AM fungus and litter both asymmetrically alleviated more competitive pressure for B. papyrifera than C. pubescens, and the interspecific competition facilitated more root morphological development and nutrition utilization by endowing B. papyrifera root superiority relative to C. pubescens compared with the intraspecific competition. In conclusion, interspecific competition is more beneficial for plant root development and nutrition than intraspecific competition in the presence of AM fungus and litter via asymmetrically alleviating competitive pressure for different plants.


Assuntos
Micorrizas , Micorrizas/fisiologia , Árvores , Raízes de Plantas , Fungos , Ecossistema , Ecologia
3.
Plants (Basel) ; 12(11)2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37299174

RESUMO

Plant invasion has severely damaged ecosystem stability and species diversity worldwide. The cooperation between arbuscular mycorrhizal fungi (AMF) and plant roots is often affected by changes in the external environment. Exogenous phosphorus (P) addition can alter the root absorption of soil resources, thus regulating the root growth and development of exotic and native plants. However, it remains unclear how exogenous P addition regulates the root growth and development of exotic and native plants mediated by AMF, affecting the exotic plant invasion. In this experiment, the invasive plant Eupatorium adenophorum and native plant Eupatorium lindleyanum were selected and cultured under intraspecific (Intra-) competition and interspecific (Inter-) competition conditions, involving inoculation with (M+) and without AMF (M-) and three different levels of P addition including no addition (P0), addition with 15 mg P kg-1 soil (P15), and addition with 25 mg P kg-1 soil (P25) for the two species. Root traits of the two species were analyzed to study the response of the two species' roots to AMF inoculation and P addition. The results showed that AMF significantly promoted the root biomass, length, surface area, volume, tips, branching points, and carbon (C), nitrogen (N), and P accumulation of the two species. Under M+ treatment, the Inter- competition decreased the root growth and nutrient accumulation of invasive E. adenophorum but increased the root growth and nutrient accumulation of native E. lindleyanum relative to the Intra- competition. Meanwhile, the exotic and native plants responded differently to P addition, exhibiting root growth and nutrient accumulation of invasive E. adenophorum increased with P addition, whereas native E. lindleyanum reduced with P addition. Further, the root growth and nutrition accumulation of native E. lindleyanum were higher than invasive E. adenophorum under Inter- competition. In conclusion, exogenous P addition promoted the invasive plant but reduced the native plant in root growth and nutrient accumulation regulated by AMF, although the native plant outcompeted the invasive plant when the two species competed. The findings provide a critical perspective that the anthropogenic P fertilizer addition might potentially contribute to the successful invasion of exotic plants.

4.
Front Plant Sci ; 13: 968719, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36247600

RESUMO

Karst ecosystems represent a typical heterogeneous habitat, and it is ubiquitous with varying interactive patches of rock and soil associated with differential weathering patterns of carbonate rocks. Arbuscular mycorrhizae fungi (AMF) play an important role in regulating plant growth and nutrition in heterogeneous karst habitats. However, it remains unclear how AMF affects the growth and nutrition of plants in heterogeneous karst soil with varying patches and weathering gravel. A heterogeneous experiment with Bidens pilosa L. was conducted in a grid microcosm through patching karst soil with different gravel contents. The experimental treatments included the AMF treatments inoculated with (M+) or without (M-) fungus Glomus etunicatum; the substrate patchiness treatments involved different sizes of the homogeneous patch (Homo), the heterogeneous large patch (Hetl), and the heterogeneous small patch (Hets); the substrate gravel treatments in the inner patch involved the free gravel (FG), the low gravel (LG) 20% in 80% soil, and the high gravel (HG) 40% in 60% soil. Plant traits related to growth and nutrients were analyzed by comparing substrate gravel content and patch size. The results showed that AMF was more beneficial in increasing the aboveground biomass of B. pilosa under the LG and HG substrates with a higher root mycorrhizal colonization rate than under the FG substrate with a lower root mycorrhizal colonization rate. AMF enhanced higher growth and nutrients for B. pilosa under the LG and HG substrates than under the FG substrate and under the Hets than under the Hetl. Moreover, AMF alleviated the limited supply of N for B. pilosa under all heterogeneous treatments. Furthermore, the response ratio LnRR of B. pilosa presented that the substrate gravel promoted the highest growth, N and P absorption than the substrate patchiness with M+ treatment, and the gravel content had a more effect on plant growth and nutrition as compared to the patch size. Overall, this study suggests that plant growth and nutrition regulated by AMF mainly depend on the substrate gravel content rather than the spatial patchiness in the heterogeneous karst habitat.

5.
Front Plant Sci ; 13: 880181, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35615141

RESUMO

Arbuscular mycorrhizal (AM) fungi that promote plant growth and nutrient acquisition are essential for nutrient-deficient karst areas, while they inevitably regulate host plants jointly with indigenous microorganisms in natural soil. However, how indigenous microorganisms regulate AM-induced benefits on plant growth and nutrient acquisition remains unclear. In this study, the Bidens tripartita as the common plant species in the karst region was cultivated into three soil substrates treated by AM fungi inoculation (AMF), AM fungi inoculation combining with indigenous microorganisms (AMI), and the control without AM fungi and indigenous microorganisms (CK). The plant biomass and concentration of nitrogen (N) and phosphorus (P) were measured, and the transcriptomic analysis was carried out using root tissues. The results showed that AM fungi significantly enhanced the plant biomass, N, and P accumulation with the reduction of plants' N/P ratio; however, the indigenous microorganisms offset the AM-induced benefits in biomass and N and P acquisition. In addition, there are 819 genes in differentially expressed genes (DEGs) of AMF vs. AMI ∩ AMF vs. CK, meaning that AM fungi induced these genes that were simultaneously regulated by indigenous microorganisms. Furthermore, the enrichment analysis suggested that these genes were significantly associated with the metabolic processes of organophosphate, P, sulfur, N, and arginine biosynthesis. Notably, 34 and 17 genes of DEGs were related to P and N metabolism, respectively. Moreover, the indigenous microorganisms significantly downregulated these DEGs, especially those encoding the PHO1 P transporters and the glnA, glutamate dehydrogenase 2 (GDH2), and urease as key enzymes in N assimilation; however, the indigenous microorganisms significantly upregulated genes encoding PHO84 inducing cellular response to phosphate (Pi) starvation. These regulations indicated that indigenous microorganisms restrained the N and P metabolism induced by AM fungi. In conclusion, we suggested that indigenous microorganisms offset nutrient benefits of AM fungi for host plants through regulating these genes related to P transport and N assimilation.

6.
PLoS One ; 17(4): e0266526, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35468152

RESUMO

Arbuscular mycorrhizal (AM) fungi, as beneficial soil microorganisms, inevitably interact with indigenous microorganisms, regulating plant growth and nutrient utilization in natural habitats. However, how indigenous microorganisms affect the benefits of growth and nutrition regulated by inoculated AM fungi for plants in karst ecosystem habitats remains unclear today. In this experiment, the Gramineae species Setaria viridis vs. Arthraxon hispidus and the Compositae species Bidens pilosa vs. Bidens tripartita exist in the initial succession stage of the karst ecosystem. These plant species were planted into different soil microbial conditions, including AM fungi soil (AMF), AM fungi interacting with indigenous microorganisms soil (AMI), and a control soil without AM fungi and indigenous microorganisms (CK). The plant biomass, nitrogen (N), and phosphorus (P) were measured; the effect size of different treatments on these variables of plant biomass and N and P were simultaneously calculated to assess plant responses. The results showed that AMF treatment differently enhanced plant biomass accumulation, N, and P absorption in all species but reduced the N/P ratio. The AMI treatment also significantly increased plant biomass, N and P, except for the S. viridis seedlings. However, regarding the effect size, the AM fungi effect on plant growth and nutrition was greater than the interactive effect of AM fungi with indigenous microorganisms. It indicates that the indigenous microorganisms offset the AM benefits for the host plant. In conclusion, we suggest that the indigenous microorganisms offset the benefits of inoculated AM fungi in biomass and nutrient accumulation for pioneer plants in the karst habitat.


Assuntos
Micorrizas , Setaria (Planta) , Ecossistema , Micorrizas/fisiologia , Solo , Microbiologia do Solo
7.
Int J Phytoremediation ; 23(12): 1244-1254, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33682536

RESUMO

How arbuscular mycorrhizal (AM) fungi affect litter nutrient release and soil properties in the nutrient-deficient karst soil, is unclear. An experiment was conducted in this study using a dual compartment device composed of a planting compartment (for the Cinnamomum camphora seedlings with or without Funneliformis mosseae fungus) and a litter compartment (with or without the litter of Arthraxon hispidus). The center baffle between the compartments was covered with a double layer of 20-µm or 0.45-µm nylon mesh, which controlled the entrance of AM mycelium into the litter compartment. The results are as follows: AM mycelium significantly increased the mass loss and carbon and nitrogen releases and decreased the nitrogen concentration in the litter. AM mycelium could significantly increase soil organic carbon, total nitrogen and availability of phosphorus during litter decomposition in the litter compartment. Redundancy analysis showed that the effect of AM mycelium on the soil organic carbon, total nitrogen in the litter compartment was closely associated with the increase in carbon and nitrogen release from litter. It was concluded that AM mycelium can enhance litter decomposition and nutrient releases, contributing to greater nutrient input to the soil and then subsequently higher soil organic carbon and nutrient content in the nutrient-poor karst soils. STATEMENT OF NOVELTYThis study firstly estimated the impacts of arbuscular mycorrhizal fungi on litter nutrient releases and soil properties through root external mycelium.


Assuntos
Micorrizas , Biodegradação Ambiental , Carbono , Fungos , Nitrogênio , Nutrientes , Raízes de Plantas , Solo , Microbiologia do Solo
8.
PLoS One ; 15(6): e0234410, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32516341

RESUMO

The Eupatorium adenophorum have widespread invaded the karst ecosystem of southwest China and threatened the regional native community stability. Arbuscular mycorrhizae (AM) plays an important role in promoting growth for host plants via root external mycelia. However, whether AM regulates plant root traits underlying competition between invasive and native species via mycorrhizal networks in karst habitats, remains unclear. An experiment was conducted in a microcosm composed of two planting compartments flanking a competition compartment. The invasive E. adenophorum and native Artemisia annua were each placed in one of the two planting compartments with or without Glomus etunicatum fungus. The nutrient access treatments included the competitive utilization (Cu), single utilization (Su) and non-utilization (Nu) by using different nylon meshes allowed or prevented mycelium passing to acquire nutrients from the competition compartment. Root traits and nutrients of the two species were analyzed. The results showed that AM fungi had differential effects on root traits and nutrients of E. adenophorum and A. annua seedlings, which increased dry weight, length, surface area, volume, tips and branching points in roots, specific root length and volume, root nitrogen (N) and phosphorus (P) contents under Cu, Su and Nu treatments. AM fungus was also associated with decreases in the average diameter for both species. Under the Cu treatment, E. adenophorum had significantly greater length, surface area, volume, tips and branching points of roots, specific root traits, and root N and P than A. annua. AM fungi changed root phenotypes and nutrient uptake for both invasive and native plant species via interconnected mycorrhizal networks. Overall, our results suggest that through mycorrhizal networks, the invasive plant experiences greater benefits than the native plant in the nutrient competition, which fosters root morphological developments in karst soil.


Assuntos
Ageratina/metabolismo , Micorrizas/metabolismo , Microbiologia do Solo , Artemisia annua/metabolismo , China , Ecossistema , Micélio , Micorrizas/fisiologia , Nitrogênio , Nutrientes , Fósforo , Raízes de Plantas/crescimento & desenvolvimento , Plantas Daninhas/metabolismo , Solo , Árvores/crescimento & desenvolvimento
9.
Int J Clin Exp Med ; 8(8): 13017-27, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26550224

RESUMO

To investigate the effect of MMP-9, MMP-2 and vWF in patients with low doses of urokinase peritoneal dialysis decreased uremia complicated with cerebral infarction. 112 cases of uremia complicated with cerebral infarction were randomly divided into the peritoneal dialysate with urokinase treatment group (66 cases) and the conventional treatment group (46 cases). At the same time, 50 cases of healthy people who were more than 45 years old were enrolled in the control group. The basic treatment in both treatment groups was the same. In urokinase therapy group based on the conventional treatment, urokinase was added into peritoneal dialysis fluid, and changes of serum MMP-9, MMP-2 and vWF were observed by drawing blood at different time points within 8 weeks. The changes of serum MMP-2, MMP-9 and vWF were detected by enzyme-linked immunosorbent assay. At the time of the onset of uremia complicated with cerebral infarction patients the serum MMP-9, MMP-2, vWF were significantly higher (P<0.05, P<0.05, P<0.01). Conventional antiplatelet therapy in brain protection only reduce MMP-9 to the normal range (P>0.05) within 8 weeks. But the MMP-2 and vWF cannot be reduced to the normal range (P<0.01, P<0.01). Low doses of urokinase can reduce MMP-9 (7 d) and MMP-2 (14 d) to the normal range (P>0.05, P>0.05) at the early stage and decrease the vWF to a normal range within 8 weeks (P>0.05). At the time of the onset of uremia complicated with cerebral infarction patients the serum MMP-9, MMP-2 and vWF increased significantly. Low doses of urokinase dialysis can reduce serum MMP-9, MMP-2, and vWF in acute uremia complicated with cerebral infarction without recurrence of cerebral infarction and cerebral hemorrhagic transformation, indicating that low dose of urokinase peritoneal dialysis may have a certain effect on the early treatment of this disease.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...