Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Public Health ; 24(1): 1495, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38835007

RESUMO

BACKGROUND: Chronic kidney disease (CKD) carries a high public health burden yet little is known about the relationship between metalworking fluid (MWF) aerosols, occupational noise and CKD. We aimed to explore the relationship between occupational MWF aerosols, occupational noise and CKD. METHODS: A total of 2,738 machinists were sampled from three machining companies in Wuxi, China, in 2022. We used the National Institute for Occupational Safety and Health (NIOSH) method 5524 to collect individual samples for MWF aerosols exposure, and the Chinese national standard (GBZ/T 189.8-2007) method to test individual occupational noise exposure. The diagnostic criteria for CKD were urinary albumin/creatinine ratio (UACR) of ≥ 30 mg/g and reduced renal function (eGFR < 60 mL.min- 1. 1.73 m- 2) lasting longer than 3 months. Smooth curve fitting was conducted to analyze the associations of MWF aerosols and occupational noise with CKD. A segmented regression model was used to analyze the threshold effects. RESULTS: Workers exposed to MWF aerosols (odds ratio [OR] = 2.03, 95% confidence interval [CI]: 1.21-3.41) and occupational noise (OR = 1.77, 95%CI: 1.06-2.96) had higher prevalence of CKD than nonexposed workers. A nonlinear and positive association was found between increasing MWF aerosols and occupational noise dose and the risk of CKD. When daily cumulative exposure dose of MWF aerosols exceeded 8.03 mg/m3, the OR was 1.24 (95%CI: 1.03-1.58), and when occupational noise exceeded 87.22 dB(A), the OR was 1.16 (95%CI: 1.04-1.20). In the interactive analysis between MWF aerosols and occupational noise, the workers exposed to both MWF aerosols (cumulative exposure ≥ 8.03 mg/m3-day) and occupational noise (LEX,8 h ≥ 87.22 dB(A)) had an increased prevalence of CKD (OR = 2.71, 95%CI: 1.48-4.96). MWF aerosols and occupational noise had a positive interaction in prevalence of CKD. CONCLUSIONS: Occupational MWF aerosols and noise were positively and nonlinearly associated with CKD, and cumulative MWF aerosols and noise exposure showed a positive interaction with CKD. These findings emphasize the importance of assessing kidney function of workers exposed to MWF aerosols and occupational noise. Prospective and longitudinal cohort studies are necessary to elucidate the causality of these associations.


Assuntos
Aerossóis , Metalurgia , Ruído Ocupacional , Exposição Ocupacional , Insuficiência Renal Crônica , Humanos , China/epidemiologia , Estudos Transversais , Aerossóis/análise , Aerossóis/efeitos adversos , Ruído Ocupacional/efeitos adversos , Exposição Ocupacional/efeitos adversos , Exposição Ocupacional/análise , Masculino , Adulto , Insuficiência Renal Crônica/epidemiologia , Pessoa de Meia-Idade , Feminino , Poluentes Ocupacionais do Ar/análise , Poluentes Ocupacionais do Ar/efeitos adversos
2.
Int Arch Occup Environ Health ; 97(1): 57-64, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38070038

RESUMO

OBJECTIVE: The relationship between metalworking fluids (MWFs) and nonalcoholic fatty liver disease (NAFLD) has not been previously explored. We aim to investigate the relationship between occupational exposure to MWFs and the prevalence of NAFLD and to determine the cumulative exposure threshold per day. METHODS: In 2020, 2079 employees were selected randomly from one computer numerical control machining factory in Wuxi for a questionnaire survey, and occupational health examinations were conducted at the affiliated branch of Wuxi Eighth People's Hospital. MWF samples were collected within the factory using the National Institute for Occupational Safety and Health (NIOSH) 5524 method. NAFLD was defined as having a hepatic steatosis index (HSI) ≥ 36 without significant alcohol consumption. The relationship between NAFLD and MWFs was analyzed using logistic regression, and the daily exposure threshold was calculated using R software. RESULTS: MWF exposure was found to be a risk factor for NAFLD in exposed workers compared to the non-exposed group. The OR for NAFLD in workers exposed to MWFs compared to controls was 1.42 (95% CI: 1.04-1.95). An increased risk of NAFLD was shown to be associated with an increasing dose. The daily exposure dose threshold to MWFs was found to be 6.54 mg/m3 (OR = 2.09, 95% CI: 1.24-3.52). CONCLUSION: An association between occupational exposure to MWFs and NAFLD was found. As the concentration of exposure rose, the prevalence of NAFLD was also escalated.


Assuntos
Poluentes Ocupacionais do Ar , Hepatopatia Gordurosa não Alcoólica , Exposição Ocupacional , Humanos , Poluentes Ocupacionais do Ar/análise , Hepatopatia Gordurosa não Alcoólica/epidemiologia , Hepatopatia Gordurosa não Alcoólica/induzido quimicamente , Metalurgia , Exposição Ocupacional/análise , Fatores de Risco
3.
Int Arch Occup Environ Health ; 97(2): 155-164, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38117351

RESUMO

OBJECTIVES: To determine the relationship between occupational noise, and obesity and body mass index (BMI) changes. METHODS: Baseline data were collected from participants (n = 1264) who were followed for 6 years in a retrospective study. The noise exposure level (LAeq,8h) was determined by equivalent continuous weighted sound pressure levels using the fixed-point surveillance method for noise monitoring. The cumulative noise exposure (CNE) level was determined using the equal energy formula, which is based on exposure history and level. RESULTS: The incidence of obesity at low (RR = 2.364, 95% CI 1.123-4.739]), medium (RR = 3.921, 95% CI 1.946-7.347]), high (RR = 5.242, 95% CI 2.642-9.208]), and severe noise levels (RR = 9.322, 95% CI 5.341-14.428]) was higher risk than the LAeq,8h control level. The risk of obesity among participants exposed to low (RR = 2.957, 95% CI 1.441-6.068]) and high cumulative noise levels (RR = 7.226, 95% CI 3.623-14.415]) was greater than the CNE control level. For every 1 dB(A) increase in LAeq,8h, the BMI increased by 0.063 kg/m2 (95% CI 0.055-0.071], SE = 0.004). For every 1 dB(A) increase in the CNE, the BMI increased by 0.102 kg/m2 (95% CI 0.090-0.113], SE = 0.006). CONCLUSIONS: Occupational noise is related to the incidence of obesity. The occupational noise level and occupational noise cumulative level were shown to be positively correlated with an increase in BMI.


Assuntos
Perda Auditiva Provocada por Ruído , Ruído Ocupacional , Exposição Ocupacional , Humanos , Ruído Ocupacional/efeitos adversos , Estudos Retrospectivos , Perda Auditiva Provocada por Ruído/epidemiologia , Perda Auditiva Provocada por Ruído/etiologia , Exposição Ocupacional/efeitos adversos , Obesidade/epidemiologia , Obesidade/complicações , China/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...