Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 16(21)2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-37959504

RESUMO

In order to provide guidance for furthering the balance of strength and toughness of AerMet 100 steel through tempering treatment, the effects of the tempering time on microstructure and mechanical properties are investigated. The microstructure evolution, especially M2C precipitates and austenite in AerMet 100 tempered at 482 °C for 1~20 h, was characterized, and its influences on the mechanical properties were studied. The tensile strength decreases gradually, the yield strength increases first and then decreases, and the fracture toughness KIC increases gradually with an increasing tempering time. The strength and toughness matching of AerMet 100 steel is achieved by tempering at 482 °C for 5~7 h. Without considering the martensitic size effect, the influence of the dislocation density on the tensile strength is more significant during tempering at 482 °C. The precipitation strengthening mechanism plays a dominant role in the yield strength when tempering for 5 h or less, and the combined influence of carbide coarsening and a sharp decrease in the dislocation density resulted in a significant decrease in tensile strength when tempering for 8 h or more. The fracture toughness KIC is primarily influenced by the reverted austenite, so that KIC increases gradually with the prolongation of the tempering time. However, a significant decrease in the dislocation density resulting from long-term tempering has a certain impact on KIC, giving rise to a decrease in the rising amplitude in KIC after tempering for 8 h or more.

2.
Magn Reson Med ; 88(3): 1370-1379, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35608214

RESUMO

PURPOSE: This work proposes "Spin-3/2 Bloch Equation" (SBE), a consolidated formalism for spin-3/2 dynamics in biological environments. The formalism encapsulates excitation, relaxation, and off-resonance with accessible matrix representation for a straightforward implementation with high computational efficiency. THEORY: The SBE is derived using spherical tensor operators to encapsulate the spin-3/2 dynamics in biological systems in a single system matrix, a formalism akin to the well-known Bloch Equations (BE). METHODS: Using the proposed SBE, simulations of three classical 23 Na pulse sequences were performed to demonstrate the versatility and applicability of the model, returning the evolution of the 23 Na spin system during these experiments: soft rectangular and adiabatic inversion recovery (IR) and triple-quantum filtering. IR simulations were compared with two existing spin-3/2 simulators and the adaptive BE as a first-order approximation. RESULTS: The proposed SBE is straightforward to implement and facilitates accurate and fast simulations of the underlying higher order coherence in sodium experiments of biological tissues. SBE simulations and comparison spin-3/2 simulators outperform the BE simulations as expected, with the SBE offering superior computational efficiency achieved by the single system matrix formalism. CONCLUSION: The proposed SBE enables comprehensive and accurate simulations for spin-3/2 systems in biological tissue. With a one-line call to an ordinary differential equation solver, it offers a computationally efficient and accessible method for use in 23 Na pulse sequence design.


Assuntos
Simulação por Computador
3.
Neuroimage ; 231: 117701, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33484853

RESUMO

PURPOSE: Quantitative susceptibility mapping (QSM) is a novel MR technique that allows mapping of tissue susceptibility values from MR phase images. QSM is an ill-conditioned inverse problem, and although several methods have been proposed in the field, in the presence of a wide range of susceptibility sources, streaking artifacts appear around high susceptibility regions and contaminate the whole QSM map. QSMART is a post-processing pipeline that uses two-stage parallel inversion to reduce the streaking artifacts and remove banding artifact at the cortical surface and around the vasculature. METHOD: Tissue and vein susceptibility values were separately estimated by generating a mask of vasculature driven from the magnitude data using a Frangi filter. Spatially dependent filtering was used for the background field removal step and the two susceptibility estimates were combined in the final QSM map. QSMART was compared to RESHARP/iLSQR and V-SHARP/iLSQR inversion in a numerical phantom, 7T in vivo single and multiple-orientation scans, 9.4T ex vivo mouse data, and 4.7T in vivo rat brain with induced focal ischemia. RESULTS: Spatially dependent filtering showed better suppression of phase artifacts near cortex compared to RESHARP and V-SHARP, while preserving voxels located within regions of interest without brain edge erosion. QSMART showed successful reduction of streaking artifacts as well as improved contrast between different brain tissues compared to the QSM maps obtained by RESHARP/iLSQR and V-SHARP/iLSQR. CONCLUSION: QSMART can reduce QSM artifacts to enable more robust estimation of susceptibility values in vivo and ex vivo.


Assuntos
Artefatos , Mapeamento Encefálico/normas , Encéfalo/irrigação sanguínea , Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética/normas , Adulto , Animais , Isquemia Encefálica/diagnóstico por imagem , Mapeamento Encefálico/métodos , Córtex Cerebral/irrigação sanguínea , Córtex Cerebral/diagnóstico por imagem , Veias Cerebrais/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Camundongos , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...