Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 17(4)2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38399061

RESUMO

This work develops a three-dimensional (3D) weak formulation, based on the consistent couple stress theory (CCST), for analyzing the size-dependent dynamic instability behavior of simply-supported, functionally graded (FG) cylindrical microshells that are subjected to combinations of periodic axial compression and external pressure. In our formulation, the microshells are artificially divided into nl layers. The displacement components of each individual layer are selected as the primary variables, which are expanded as a double Fourier series in the in-plane domain and are interpolated with Hermitian C2 polynomials in the thickness direction. Incorporating the layer-wise displacement models into our weak formulation, we develop a Hermitian C2 finite layer method (FLM) for addressing the current issue. The accuracy and the convergence rate of our Hermitian C2 FLM are validated by comparing the solutions it produces with the accurate two-dimensional solutions of critical loads and critical pressures of FG cylindrical macroshells and single-walled carbon nanotubes, which were reported in the literature. The numerical results show the effects of the material length-scale parameter, the inhomogeneity index, the radius-to-thickness and length-to-radius ratios, the load magnitude ratio, and the static and dynamic load factors on the first principal and first secondary instability regions of parametric resonance of simply-supported FG cylindrical microshells are significant.

2.
Materials (Basel) ; 16(6)2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36984243

RESUMO

Within a framework of the consistent couple stress theory (CCST), a size-dependent finite element method (FEM) is developed. The three-dimensional (3D) free vibration characteristics of simply-supported, functionally graded (FG) graphene platelets (GPLs)-reinforced composite (GPLRC) cylindrical microshells are analyzed. In the formulation, the microshells are artificially divided into numerous finite microlayers. Fourier functions and Hermitian C2 polynomials are used to interpolate the in-surface and out-of-surface variations in the displacement components induced in each microlayer. As a result, the second-order derivative continuity conditions for the displacement components at each nodal surface are satisfied. Five distribution patterns of GPLs varying in the thickness direction are considered, including uniform distribution (UD) and FG A-type, O-type, V-type, and X-type distributions. The accuracy and convergence of the CCST-based FEM are validated by comparing the solutions it produces with the exact and approximate 3D solutions for FG cylindrical macroshells reported in the literature, for which the material length scale parameter is set at zero. Numerical results show that by increasing the weight fraction of GPLs by 1%, the natural frequency of FG-GPLRC cylindrical microshells can be increased to more than twice that of the homogeneous cylindrical microshells. In addition, the effects of the material length scale parameter, the GPL distribution patterns, and the length-to-thickness ratio of GPLs on natural frequencies of the FG-GPLRC cylindrical microshells are significant.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...