Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochemistry ; 47(6): 1808-18, 2008 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-18197709

RESUMO

The hydrophobic proteins of lung surfactant (LS), SP-B and SP-C, are critical constituents of an effective surfactant replacement therapy for the treatment of respiratory distress syndrome. Because of concerns and difficulties associated with animal-derived surfactants, recent investigations have focused on the creation of synthetic analogues of the LS proteins. However, creating an accurate mimic of SP-C that retains its biophysical surface activity is extraordinarily challenging given the lipopeptide's extreme hydrophobicity and propensity to misfold and aggregate. One successful approach that overcomes these difficulties is the use of poly-N-substituted glycines, or peptoids, to mimic SP-C. To develop a non-natural, bioactive mimic of SP-C and to investigate the effects of side chain chemistry and length of the helical hydrophobic region, we synthesized, purified, and performed in vitro testing of two classes of peptoid SP-C mimics: those having a rigid alpha-chiral aromatic helix and those having a biomimetic alpha-chiral aliphatic helix. The length of the two classes of mimics was also systematically altered. Circular dichroism spectroscopy gave evidence that all of the peptoid-based mimics studied here emulated SP-C's secondary structure, forming stable helical structures in solution. Langmuir-Wilhelmy surface balance, fluorescence microscopy, and pulsating bubble surfactometry experiments provide evidence that the aromatic-based SP-C peptoid mimics, in conjunction with a synthetic lipid mixture, have superior surface activity and biomimetic film morphology in comparison to the aliphatic-based mimics and that there is an increase in surface activity corresponding to increasing helical length.


Assuntos
Mimetismo Molecular , Proteína C Associada a Surfactante Pulmonar/química , Cromatografia Líquida de Alta Pressão , Microscopia de Fluorescência , Estrutura Secundária de Proteína , Espectrometria de Massas por Ionização por Electrospray
2.
Colloids Surf B Biointerfaces ; 57(1): 37-55, 2007 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-17287113

RESUMO

A crucial aspect of developing a functional, biomimetic lung surfactant (LS) replacement is the selection of the synthetic lipid mixture and surfactant proteins (SPs) or suitable mimics thereof. Studies elucidating the roles of different lipids and surfactant proteins in natural LS have provided critical information necessary for the development of synthetic LS replacements that offer performance comparable to the natural material. In this study, the in vitro surface-active behaviors of peptide- and peptoid-based mimics of the lung surfactant proteins, SP-B and SP-C, were investigated using three different lipid formulations. The lipid mixtures were chosen from among those commonly used for the testing and characterization of SP mimics--(1) dipalmitoyl phosphatidylcholine:palmitoyloleoyl phosphatidylglycerol 7:3 (w/w) (PCPG), (2) dipalmitoyl phosphatidylcholine:palmitoyloleoyl phosphatidylglycerol:palmitic acid 68:22:9 (w/w) (TL), and (3) dipalmitoyl phosphatidylcholine:palmitoyloleoyl phosphatidylcholine:palmitoyloleoyl phosphatidylglycerol:palmitoyloleoyl phosphatidylethanolamine:palmitoyloleoyl phosphatidylserine:cholesterol 16:10:3:1:3:2 (w/w) (IL). The lipid mixtures and lipid/peptide or lipid/peptoid formulations were characterized in vitro using a Langmuir-Wilhelmy surface balance, fluorescent microscopic imaging of surface film morphology, and a pulsating bubble surfactometer. Results show that the three lipid formulations exhibit significantly different surface-active behaviors, both in the presence and absence of SP mimics, with desirable in vitro biomimetic behaviors being greatest for the TL formulation. Specifically, the TL formulation is able to reach low-surface tensions at physiological temperature as determined by dynamic PBS and LWSB studies, and dynamic PBS studies show this to occur with a minimal amount of compression, similar to natural LS.


Assuntos
Fosfolipídeos/química , Proteína B Associada a Surfactante Pulmonar/química , Proteína C Associada a Surfactante Pulmonar/química , Surfactantes Pulmonares/química , Humanos , Recém-Nascido , Microscopia de Fluorescência , Mimetismo Molecular , Peptídeos/química , Fenilglioxal/análogos & derivados , Fenilglioxal/química , Síndrome do Desconforto Respiratório do Recém-Nascido/metabolismo , Propriedades de Superfície
3.
J Am Chem Soc ; 128(5): 1733-8, 2006 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-16448149

RESUMO

Non-natural polymers with well-defined three-dimensional folds offer considerable potential for engineering novel functions that are outside the scope of biological polymers. Here we describe a family of N-substituted glycine or "peptoid" nonamers that folds into an unusual "threaded loop" structure of exceptional thermal stability and conformational homogeneity in acetonitrile. The structure is chain-length-specific and relies on bulky, chiral side chains and chain-terminating functional groups for stability. Notable elements of the structure include the engagement of the positively charged amino terminus by carbonyl groups of the backbone through hydrogen bonding interactions and shielding of polar groups from and near-complete exposure of hydrophobic groups to solvent, in a manner resembling a folded polypeptide globular domain turned inside-out. The structure is stable in a variety of organic solvents but is readily denatured in any solvent/cosolvent milieu with hydrogen bonding potential. The structure could serve as a scaffold for the elaboration of novel functions and could be used to test methodologies for predicting solvent-dependent polymer folding.


Assuntos
Peptoides/química , Dicroísmo Circular , Glicina/análogos & derivados , Glicina/química , Ligação de Hidrogênio , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular/métodos , Conformação Proteica , Dobramento de Proteína , Estrutura Secundária de Proteína
4.
J Appl Physiol (1985) ; 99(2): 624-33, 2005 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15790687

RESUMO

The pulsating bubble surfactometer (PBS) is often used for in vitro characterization of exogenous lung surfactant replacements and lung surfactant components. However, the commercially available PBS is not able to dynamically track bubble size and shape. The PBS therefore does not account for bubble growth or elliptical bubble shape that frequently occur during device use. More importantly, the oscillatory volume changes of the pulsating bubble are different than those assumed by the software of the commercial unit. This leads to errors in both surface area and surface tension measurements. We have modified a commercial PBS through the addition of an image-acquisition system, allowing real-time determination of bubble size and shape and hence the accurate tracking of surface area and surface tension. Compression-expansion loops obtained with the commercially available PBS software were compared with those provided by the image-analysis system for dipalmitoylphosphatidylcholine, Infasurf, and Tanaka lipids (dipalmitoylphosphatidylcholine-palmitoyloleoylphosphatidyl-glycerol-palmitic acid, 68:22:9) at concentrations of 0.1 and 1.0 mg/ml and at frequencies of 1 and 20 cycles/min. Whereas minimum surface tension as determined by the image-analysis system is similar to that measured by the commercially available software, the maximum surface tension and the shapes of the interfacial area-surface tension loops are quite different. Differences are attributable to bubble drift, nonsinusoidal volume changes, and variable volume excursions seen with the modified system but neglected by the original system. Image analysis reveals that the extent of loop hysteresis is greatly overestimated by the commercial device and that an apparent, rapid increase in surface tension upon film expansion seen in PBS loops is not observed with the image-analysis system. The modified PBS system reveals new dynamic characteristics of lung surfactant preparations that have not previously been reported.


Assuntos
Interpretação de Imagem Assistida por Computador/métodos , Microfluídica/instrumentação , Microscopia/instrumentação , Surfactantes Pulmonares/análise , Surfactantes Pulmonares/química , Propriedades de Superfície , Desenho de Equipamento , Análise de Falha de Equipamento , Microfluídica/métodos , Microscopia/métodos , Microesferas , Óptica e Fotônica/instrumentação , Tamanho da Partícula , Vibração , Viscosidade
5.
Chem Biol ; 10(11): 1057-63, 2003 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-14652073

RESUMO

Among the families of peptidomimetic foldamers under development as novel biomaterials and therapeutics, poly-N-substituted glycines (peptoids) with alpha-chiral side chains are of particular interest for their ability to adopt stable, helical secondary structure in organic and aqueous solution. Here, we show that a peptoid 22-mer with a biomimetic sequence of side chains and an amphipathic, helical secondary structure acts as an excellent mimic of surfactant protein C (SP-C), a small protein that plays an important role in surfactant replacement therapy for the treatment of neonatal respiratory distress syndrome. When integrated into a lipid film, the helical peptoid SP mimic captures the essential surface-active behaviors of the natural protein. This work provides an example of how an abiological oligomer that closely mimics both the hydrophobic/polar sequence patterning and the fold of a natural protein can also mimic its biophysical function.


Assuntos
Mimetismo Molecular , Proteína C Associada a Surfactante Pulmonar/química , Dicroísmo Circular , Microscopia de Fluorescência , Modelos Moleculares , Estrutura Secundária de Proteína
6.
J Am Chem Soc ; 125(44): 13525-30, 2003 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-14583049

RESUMO

Substantial progress has been made in the synthesis and characterization of various oligomeric molecules capable of autonomous folding to well-defined, repetitive secondary structures. It is now possible to investigate sequence-structure relationships and the driving forces for folding in these systems. Here, we present detailed analysis by X-ray crystallography, NMR, and circular dichroism (CD) of the helical structures formed by N-substituted glycine (or "peptoid") oligomers with alpha-chiral, aliphatic side chains. The X-ray crystal structure of a N-(1-cyclohexylethyl)glycine pentamer, the first reported for any peptoid, shows a helix with cis-amide bonds, approximately 3 residues per turn, and a pitch of approximately 6.7 A. The backbone dihedral angles of this pentamer are similar to those of a polyproline type I peptide helix, in agreement with prior modeling predictions. This crystal structure likely represents the major solution conformers, since the CD spectra of analogous peptoid hexamers, dodecamers, and pentadecamers, composed entirely of either (S)-N-(1-cyclohexylethyl)glycine or (S)-N-(sec-butyl)glycine monomers, also have features similar to those of the polyproline type I helix. Furthermore, this crystal structure is similar to a solution NMR structure previously described for a peptoid pentamer comprised of chiral, aromatic side chains, which suggests that peptoids containing either aromatic or aliphatic alpha-chiral side chains adopt fundamentally similar helical structures in solution, despite distinct CD spectra. The elucidation of detailed structural information for peptoid helices with alpha-chiral aliphatic side chains will facilitate the mimicry of biomolecules, such as transmembrane protein domains, in a distinctly stable form.


Assuntos
Glicina/análogos & derivados , Peptoides/química , Dicroísmo Circular , Cristalografia por Raios X , Glicina/química , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , Peptoides/síntese química , Dobramento de Proteína , Estereoisomerismo
7.
Biopolymers ; 63(1): 12-20, 2002 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-11754344

RESUMO

Poly-N-substituted glycines or "peptoids" are protease-stable peptide mimics. Although the peptoid backbone is achiral and lacks hydrogen-bond donors, substitution with alpha-chiral side chains can drive the formation of stable helices that give rise to intense CD spectra. To systematically study the solution properties and stability of water-soluble peptoid helices with alpha-chiral side chains, we have synthesized and characterized an amphipathic, 36-residue N-substituted glycine oligomer. CD was used to investigate effects of concentration and solvent environment on this helical peptoid. We saw no significant dependence of helical structure on concentration. Intense, "alpha-helix-like" CD spectra were observed for the 36-mer in aqueous, 2,2,2-trifluorethanol (TFE), and methanol solution, proving a relative insensitivity of peptoid helical structure to solvent environment. While CD spectra taken in these different solvents were fundamentally similar in shape, we did observe some interesting differences in the intensities of particular CD bands in the various solvents. For example, the addition of TFE to an aqueous solvent increases the degree of peptoid helicity, as is observed for polypeptide alpha-helices. Moreover, the helical structure of peptoids appears to be virtually unaffected by heat, even in an aqueous buffer containing 8 M urea. The extraordinary resistance of these peptoid helices to denaturation is consistent with a dominant role of steric forces in their structural stabilization. The structured polypeptoids studied here may have potential as robust mimics of helical polypeptides of therapeutic interest.


Assuntos
Glicina/química , Oligopeptídeos/química , Biopolímeros/química , Dicroísmo Circular , Estabilidade de Medicamentos , Glicina/análogos & derivados , Peptoides , Estrutura Secundária de Proteína , Sais , Solubilidade , Solventes , Temperatura , Ureia , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...