Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Zhongguo Yi Liao Qi Xie Za Zhi ; 48(3): 281-284, 2024 May 30.
Artigo em Chinês | MEDLINE | ID: mdl-38863094

RESUMO

In magnetic resonance examination, the interaction between implants and the radio frequency (RF) fields induces heating in human tissue and may cause tissue damage. To assess the RF-induced heating of implants, three steps should be executed, including electromagnetic model construction, electromagnetic model validation, and virtual human body simulations. The crucial step of assessing RF-induced heating involves the construction of a test environment for electromagnetic model validation. In this study, a hardware environment, comprised of a RF generation system, electromagnetic field measurement system, and a robotic arm positioning system, was established. Furthermore, an automated control software environment was developed using a Python-based software development platform to enable the creation of a high-precision automated integrated test environment. The results indicate that the electric field generated in this test environment aligns well with the simulated electric field, making it suitable for assessing the RF-induced heating effects of implants.


Assuntos
Campos Eletromagnéticos , Temperatura Alta , Próteses e Implantes , Ondas de Rádio , Software , Humanos , Imageamento por Ressonância Magnética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...