Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Polymers (Basel) ; 15(8)2023 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-37112035

RESUMO

This study investigates the effect of adding stearic acid (SA) on the thermal conductivity of polyamide 6 (PA6)/boron nitride (BN) composites. The composites were prepared by melt blending, and the mass ratio of PA6 to BN was fixed at 50:50. The results show that when the SA content is less than 5 phr, some SA is distributed at the interface between BN sheets and PA6, which improves the interface adhesion of the two phases. This improves the force transfer from the matrix to BN sheets, promoting the exfoliation and dispersion of BN sheets. However, when the SA content was greater than 5 phr, SA tends to aggregate and form separate domains rather than being dispersed at the interface between PA6 and BN. Additionally, the well-dispersed BN sheets act as a heterogeneous nucleation agent, significantly improving the crystallinity of the PA6 matrix. The combination of good interface adhesion, excellent orientation, and high crystallinity of the matrix leads to efficient phonon propagation, resulting in a significant improvement in the thermal conductivity of the composite. The highest thermal conductivity of the composite is achieved when the SA content is 5 phr, which is 3.59 W m-1 K-1. The utilization of a composite material consisting of 5phr SA as the thermal interface material displays the highest thermal conductivity, and the composite also demonstrates satisfactory mechanical properties. This study proposes a promising strategy for the preparation of composites with high thermal conductivity.

2.
Int J Biol Macromol ; 215: 646-656, 2022 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-35777508

RESUMO

Currently, it is still a huge challenge to prepare high performance eco-friendly poly(lactic acid) (PLA) with high thermal stability, good processability, excellent crystallization behavior, good transparency and highly-efficient fire safety. In this paper, a novel bio-based nucleation agent N-(furan-2-ylmethyl)-P,P-diphenylphosphinic amide (FPPA) was prepared and used for the fabrication of fire safety PLA/FPPA composites. The chemical structure of FPPA was measured by FTIR, NMR and MS. Further, the crystallization behavior, thermal stability, fire safety and mechanical properties of PLA/FPPA composites were performed by TGA, DSC, polarization microscope, LOI, UL94, cone calorimeter, DMA and, SEM, Raman, GC-MS, and TGA-FTIR. The results showed that the multifunctional FPPA not only had a high thermal stability and was a good nucleation agent for PLA. Moreover, only loading of 3 wt% FPPA increased the LOI of PLA from 19.0 to 33.8 % with UL-94 V-0 classification. Furthermore, the heat release rate and total heat release values of PLA/3%FPPA composite reduced by 6.3 % and 15.3 % in cone-calorimeter test. Such high fire safety was mainly attributed to specific fire safety radicals due to thermal degradation of FPPA to interrupt composites burning in gas phase. Besides, transparency and mechanical properties were almost not changed because of low loading of FPPA in PLA. This multifunctional bio-based fire-retardant for PLA with good comprehensive performance promises broad application in engineering electronics, automobiles, 3D printing and construction materials.


Assuntos
Retardadores de Chama , Cristalização , Poliésteres/química
3.
Polymers (Basel) ; 14(8)2022 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-35458279

RESUMO

Polylactic acid (PLA)-thermoplastic polyurethane (TPU) copolymer (PTC) was prepared by melting TPU pellets in molten lactide, followed by in situ ring-opening coordination polymerization. The results from FTIR and 1H-NMR confirmed the formation of the copolymer. PLA/TPU blends with different TPU contents were prepared by melt blending method. SEM and mechanical properties showed a conspicuous phase separation between PLA and TPU. In order to further improve the mechanical properties of the blend, PTC was used as the compatibilizer and the effects of the PTC content on the properties of the blend were investigated. The addition of PTC made TPU particles smaller in PLA matrix and improved the compatibility. With the loading of 5 wt.% PTC, the impact strength of the PLA/TPU blend reached 27.8 kJ/m2, which was 31.1% and 68.5% higher than that of the blend without PTC and pure PLA, respectively. As the content of PTC was more than 5 wt.%, the mechanical properties declined since the compatibilizer tended to form separate clusters, which could reduce the part distributed between the dispersed phase and the matrix, leading to a reduction in the compatibility of the blend. Moreover, the DMA results confirmed PTC could improve the compatibility between PLA and TPU.

4.
Carbohydr Polym ; 249: 116836, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32933680

RESUMO

Polyethylene glycol (PEG)-based composite phase change materials (PCMs) containing hydroxylated boron nitride (BN-OH), cellulose nanofiber (CNF), and chitosan (CS) were prepared by the method of interfacial polyelectrolyte complex spinning, based on in-situ ionic cross-linking between CNF and CS. The wrapping effect of cross-linked CNF/CS networks and the strong interfacial interactions contributed to superior shape-stability throughout the phase change process. Furthermore, the homogeneously dispersed BN-OHs was beneficial to the construction of the continuous thermal conductive paths, and the excellent interfacial interactions between BN-OH and the matrix would lower the heat loss caused by phonon scattering in the interface. As a result, the thermal conductivity of the PCMs containing 47.5 wt% BN-OH reached 4.005 W/mK, which was 22.56 times higher than that of the pure PEG. Combined with the excellent thermal reliability and thermal stability, the form-stable PCMs showed a promising application potential in the fields of electronic cooling or temperature-adaptable textiles.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...