Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant J ; 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38860937

RESUMO

Stem is important for assimilating transport and plant strength; however, less is known about the genetic basis of its structural characteristics. In this study, a high-throughput method, "LabelmeP rice" was developed to generate 14 traits related to stem regions and vascular bundles, which allows the establishment of a stem cross-section phenotype dataset containing anatomical information of 1738 images from hand-cut transections of stems collected from 387 rice germplasm accessions grown over two successive seasons. Then, the phenotypic diversity of the rice accessions was evaluated. Genome-wide association studies identified 94, 83, and 66 significant single nucleotide polymorphisms (SNPs) for the assayed traits in 2 years and their best linear unbiased estimates, respectively. These SNPs can be integrated into 29 quantitative trait loci (QTL), and 11 of them were common in 2 years, while correlated traits shared 19. In addition, 173 candidate genes were identified, and six located at significant SNPs were repeatedly detected and annotated with a potential function in stem development. By using three introgression lines (chromosome segment substitution lines), four of the 29 QTLs were validated. LOC_Os01g70200, located on the QTL uq1.4, is detected for the area of small vascular bundles (SVB) and the rate of large vascular bundles number to SVB number. Besides, the CRISPR/Cas9 editing approach has elucidated the function of the candidate gene LOC_Os06g46340 in stem development. In conclusion, the results present a time- and cost-effective method that provides convenience for extracting rice stem anatomical traits and the candidate genes/QTL, which would help improve rice.

3.
BMC Plant Biol ; 23(1): 11, 2023 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-36604645

RESUMO

BACKGROUND: The sterile lemma is a unique organ of the rice (Oryza sativa L.) spikelet. However, the characteristics and origin of the rice sterile lemma have not been determined unequivocally, so it is important to elucidate the molecular mechanism of the development of the sterile lemma. RESULTS: In the paper, we outline the regulatory mechanism of sterile lemma development by LONG STERILE LEMMA1 (G1), which has been identified as the gene controlling sterile lemma development. Based on the comprehensive analyses of transcriptome dynamics during sterile lemma development with G1 alleles between wild-type (WT) and mutant (MT) in rice, we obtained co-expression data and regulatory networks related to sterile lemma development. Co-transfection assays of rice protoplasts confirmed that G1 affects the expression of various phytohormone-related genes by regulating a number of critical transcription factors, such as OsLBD37 and OSH1. The hormone levels in sterile lemmas from WT and MT of rice supports the hypotheses that lower auxin, lower gibberellin, and higher cytokinin concentrations are required to maintain a normal phenotype of sterile lemmas. CONCLUSION: The regulatory networks have considerable reference value, and some of the regulatory relationships exhibiting strong correlations are worthy of further study. Taken together, these work provided a detailed guide for further studies into the molecular mechanism of sterile lemma development.


Assuntos
Oryza , Redes Reguladoras de Genes , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Mutação
4.
Plants (Basel) ; 10(4)2021 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-33924151

RESUMO

Seed storability is a main agronomically important trait to assure storage safety of grain and seeds in rice. Although many quantitative trait loci (QTLs) and associated genes for rice seed storability have been identified, the detailed genetic mechanisms of seed storability remain unclear in rice. In this study, a genome-wide association study (GWAS) was performed in 456 diverse rice core collections from the 3K rice genome. We discovered the new nine QTLs designated as qSS1-1, qSS1-2, qSS2-1, qSS3-1, qSS5-1, qSS5-2, qSS7-1, qSS8-1, and qSS11-1. According to the analysis of the new nine QTLs, our results could well explain the reason why seed storability of indica subspecies was superior to japonica subspecies in rice. Among them, qSS1-2 and qSS8-1 were potentially co-localized with a known associated qSS1/OsGH3-2 and OsPIMT1, respectively. Our results also suggest that pyramiding breeding of superior alleles of these associated genes will lead to new varieties with improved seed storability in the future.

5.
Guang Pu Xue Yu Guang Pu Fen Xi ; 36(3): 697-701, 2016 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-27400508

RESUMO

A new method based on near-infrared reflectance spectroscopy (NIRS) analysis was explored to determine the content of rice-resistant starch instead of common chemical method which took long time was high-cost. First of all, we collected 62 spectral data which have big differences in terms of resistant starch content of rice, and then the spectral data and detected chemical values are imported chemometrics software. After that a near-infrared spectroscopy calibration model for rice-resistant starch content was constructed with partial least squares (PLS) method. Results are as follows: In respect of internal cross validation, the coefficient of determination (R2) of untreated, pretreatment with MSC+1thD, pretreatment with 1thD+SNV were 0.920 2, 0.967 0 and 0.976 7 respectively. Root mean square error of prediction (RMSEP) were 1.533 7, 1.011 2 and 0.837 1 respectively. In respect of external validation, the coefficient of determination (R2) of untreated, pretreatment with MSC+ 1thD, pretreatment with 1thD+SNV were 0.805, 0.976 and 0.992 respectively. The average absolute error was 1.456, 0.818, 0.515 respectively. There was no significant difference between chemical and predicted values (Turkey multiple comparison), so we think near infrared spectrum analysis is more feasible than chemical measurement. Among the different pretreatment, the first derivation and standard normal variate (1thD+SNV) have higher coefficient of determination (R2) and lower error value whether in internal validation and external validation. In other words, the calibration model has higher precision and less error by pretreatment with 1thD+SNV.


Assuntos
Oryza/química , Sementes/química , Espectroscopia de Luz Próxima ao Infravermelho , Amido/química , Calibragem , Grão Comestível/química , Análise dos Mínimos Quadrados , Modelos Teóricos
6.
Plant Mol Biol ; 89(4-5): 475-92, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26438231

RESUMO

Damaged proteins containing abnormal isoaspartyl (isoAsp) accumulate as seeds age and the abnormality is thought to undermine seed vigor. Protein-L-isoaspartyl methyltransferase (PIMT) is involved in isoAsp-containing protein repair. Two PIMT genes from rice (Oryza sativa L.), designated as OsPIMT1 and OsPIMT2, were isolated and investigated for their roles. The results indicated that OsPIMT2 was mainly present in green tissues, but OsPIMT1 largely accumulated in embryos. Confocal visualization of the transient expression of OsPIMTs showed that OsPIMT2 was localized in the chloroplast and nucleus, whereas OsPIMT1 was predominately found in the cytosol. Artificial aging results highlighted the sensitivity of the seeds of OsPIMT1 mutant line when subjected to accelerated aging. Overexpression of OsPIMT1 in transgenic seeds reduced the accumulation of isoAsp-containing protein in embryos, and increased embryo viability. The germination percentage of transgenic seeds overexpressing OsPIMT1 increased 9-15% compared to the WT seeds after 21-day of artificial aging, whereas seeds from the OsPIMT1 RNAi lines overaccumulated isoAsp in embryos and experienced rapid loss of seed germinability. Taken together, these data strongly indicated that OsPIMT1-related seed longevity improvement is probably due to the repair of detrimental isoAsp-containing proteins that over accumulate in embryos when subjected to accelerated aging.


Assuntos
Oryza/enzimologia , Proteínas de Plantas/metabolismo , Proteína D-Aspartato-L-Isoaspartato Metiltransferase/metabolismo , Ácido Abscísico/biossíntese , Sequência de Aminoácidos , Genes de Plantas , Dados de Sequência Molecular , Oryza/embriologia , Oryza/genética , Filogenia , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Proteína D-Aspartato-L-Isoaspartato Metiltransferase/genética , Interferência de RNA , Elementos Reguladores de Transcrição , Sementes/enzimologia , Sementes/genética , Homologia de Sequência de Aminoácidos , Estresse Fisiológico , Frações Subcelulares/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...