Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Nanosci Nanotechnol ; 8(12): 6528-32, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19205235

RESUMO

Phase transitions for CdTe nanoparticles (NPs) under high pressure up to 37.0 GPa have been studied using fluorescence measurements. The phase transition from cinnarbar to rocksalt phase has been observed in CdTe NPs solution at 5.8 GPa, which is much higher than the phase transition pressure of bulk CdTe (3.8 GPa) and that of CdTe NPs in solid form (0.8 GPa). CdTe NPs solution therefore shows elevated phase transition pressure and enhanced stability against pressure compared with bulk CdTe and CdTe NPs in solid forms. The enhanced stability of CdTe NPs solution has been attributed to possible shape change in the phase transition and/or inhomogeneous strains in nanoparticle solutions.

2.
J Am Chem Soc ; 125(36): 11100-5, 2003 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-12952492

RESUMO

We report on the synthesis of semiconductor nanocrystals of PbS, ZnS, CdS, and MnS through a facile and inexpensive synthetic process. Metal-oleylamine complexes, which were obtained from the reaction of metal chloride and oleylamine, were mixed with sulfur. The reaction mixture was heated under appropriate experimental conditions to produce metal sulfide nanocrystals. Uniform cube-shaped PbS nanocrystals with particle sizes of 6, 8, 9, and 13 nm were synthesized. The particle size was controlled by changing the relative amount of PbCl(2) and sulfur. Uniform 11 nm sized spherical ZnS nanocrystals were synthesized from the reaction of zinc chloride and sulfur, followed by one cycle of size-selective precipitation. CdS nanocrystals that consist of rods, bipods, and tripods were synthesized from a reaction mixture containing a 1:6 molar ratio of cadmium to sulfur. Spherical CdS nanocrystals (5.1 nm sized) were obtained from a reaction mixture with a cadmium to sulfur molar ratio of 2:1. MnS nanocrystals with various sizes and shapes were synthesized from the reaction of MnCl(2) and sulfur in oleylamine. Rod-shaped MnS nanocrystals with an average size of 20 nm (thickness) x 37 nm (length) were synthesized from a 1:1 molar ratio of MnCl(2) and sulfur at 240 degrees C. Novel bullet-shaped MnS nanocrystals with an average size of 17 nm (thickness) x 44 nm (length) were synthesized from the reaction of 4 mmol of MnCl(2) and 2 mmol of sulfur at 280 degrees C for 2 h. Shorter bullet-shaped MnS nanocrystals were synthesized from a 3:1 molar ratio of MnCl(2) and sulfur. Hexagon-shaped MnS nanocrystals were also obtained. All of the synthesized nanocrystals were highly crystalline.

3.
J Am Chem Soc ; 125(21): 6553-7, 2003 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-12785795

RESUMO

A new and simple method has been developed to synthesize large quantities of highly monodisperse tetragonal zirconia nanocrystals. In this synthesis, a nonhydrolytic sol-gel reaction between zirconium(IV) isopropoxide and zirconium(IV) chloride at 340 degrees C generated 4 nm sized zirconia nanoparticles. A high-resolution transmission electron microscopic (HRTEM) image showed that the particles have a uniform particle size distribution and that they are highly crystalline. These monodisperse nanoparticles were synthesized without any size selection process. X-ray diffraction studies combined with Rietveld refinement revealed that the ZrO(2) nanocrystals are the high-temperature tetragonal phase, and very close to a cubic phase. When zirconium(IV) bromide is used as a precursor instead of zirconium chloride, zirconia nanoparticles with an average size of 2.9 nm were obtained. The UV-visible absorption spectrum of 4 nm sized zirconia nanoparticles exhibited a strong absorption starting at around 270 nm. A fluorescence spectrum with excitation at 300 nm showed a broad fluorescence band centered around 370 nm. FTIR spectra showed indication of TOPO binding on the ZrO(2) nanoparticle surface. These optical studies also suggest that the nanoparticles are of high quality in terms of narrow particle size distribution and relatively low density of surface trap states.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...