Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 99
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Affect Disord ; 348: 333-344, 2024 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-38171418

RESUMO

BACKGROUND: The endocannabinoid system plays a crucial role in regulating mood, but the specific involvement of cannabinoid receptor type 2 (CB2R) in depression remains poorly understood. Similarly, the mechanisms by which electroacupuncture (EA) provides therapeutic benefits for depression are not clearly defined. This research aims to explore the function of CB2R in depression and examine if the therapeutic effects of EA are associated with the hippocampal CB2R system. METHODS: Mice experiencing social defeat stress (SDS) were used to model depression and anxiety behaviors. We quantified hippocampal CB2R and N-arachidonoylethanolamide (AEA) levels. The efficacy of a CB2R agonist, JWH133, in mitigating SDS-induced behaviors was evaluated. Additionally, EA's impact on CB2R and AEA was assessed, along with the influence of CB2R antagonist AM630 on EA's antidepressant effects. RESULTS: SDS led to depressive and anxiety-like behaviors, with corresponding decreases in hippocampal CB2R and AEA. Treatment with JWH133 ameliorated these behaviors. EA treatment resulted in increased CB2R and AEA levels, while AM630 blocked these antidepressant effects. LIMITATIONS: The study mainly focused on the SDS model, which may not entirely reflect other depression models. Besides, further investigation is needed to understand the precise mechanisms by which CB2R and AEA contribute to EA's effects. CONCLUSIONS: The study suggests hippocampal downregulation of CB2R and AEA contributes to depression. Upregulation of CB2R and AEA in response to EA suggests their involvement in EA's antidepressant effects. These findings provide insights into the role of the hippocampal CB2R system in depression and the potential mechanisms underlying EA's therapeutic effects.


Assuntos
Canabinoides , Depressão , Camundongos , Animais , Receptores de Canabinoides , Depressão/tratamento farmacológico , Derrota Social , Canabinoides/farmacologia , Canabinoides/uso terapêutico , Antidepressivos
2.
Neurobiol Dis ; 169: 105743, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35490927

RESUMO

Depression is one of the most prevalent mental illnesses in the world today, and the onset of depression is usually accompanied by neuroinflammation and impaired adult neurogenesis. As a new potential member of the endocannabinoid (eCB) system, G protein coupled receptor 55 (GPR55) has been associated with mood regulation. However, the role of GPR55 in the pathophysiology of depression remains poorly understood. Thus, a 10-day chronic social defeat stress (CSDS) paradigm was utilized as an animal model of depression to explore the potential role of GPR55 in depression. After CSDS, the protein level of GPR55 decreased significantly, but the mRNA expression did not change significantly, highlighting that although the GPR55 protein was involved in the progression of the depression- and anxiety-like phenotypes, its mRNA was not. Additionally, depression- and anxiety-like behaviors were also accompanied by neuroinflammation and impaired adult neurogenesis in the hippocampus. Interestingly, O-1602, a GPR55 agonist, remarkably prevented the development of depression- and anxiety-like behaviors as well as hippocampal neuroinflammation and neurogenesis deficits induced by CSDS. However, after electroacupuncture (EA) alleviated depression- and anxiety-like behaviors induced by CSDS, treatment with a GPR55 antagonist (CID16020046) reversed this effect. Our research demonstrated that downregulation of GPR55 expression in the hippocampus might mediate CSDS-induced depression- and anxiety-like phenotypes, and activation and upregulation of GPR55, which might be correlated with its anti-inflammatory and subsequent neuroprotective effects, could be a potential treatment for depression.


Assuntos
Fármacos Neuroprotetores , Derrota Social , Animais , Depressão/metabolismo , Hipocampo/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Neurogênese/fisiologia , Doenças Neuroinflamatórias , Fármacos Neuroprotetores/farmacologia , Receptores de Canabinoides/metabolismo , Estresse Psicológico/complicações
3.
J Steroid Biochem Mol Biol ; 207: 105807, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33345973

RESUMO

Postmenopausal depression is mainly caused by the deprivation of ovarian hormones during menopausal transition, it is of great importance to study on the treatment that could effectively relieve symptoms of menopausal depression with fewer side effects. Activation of G-protein-coupled estrogen receptor (GPER) has long been reported to facilitate neuronal plasticity and improve cognition in animals. Meanwhile, it could participate in regulation of intracellular signaling pathways through the characteristic of GPER, ameliorate intracellular mitochondrial function and oxidative stress. However, the impact of GPER on regulating estrogen deprived-depressant and anxious behaviors is still largely unknown. Here we used the ovariectomized female rats to imitate the condition of menopause. Owing to the lateral ventricle administration of G-1 which specifically react with GPER receptor intracerebrally, Ovariectomized (OVX) female rats showed depressive- or anxiety-like phenotypes with attenuated mitochondrial function. In addition, G-1 facilitated PKA activation, which further accelerated TSPO phosphorylation and alleviated menopausal depression- and anxiety-like behaviors. Moreover, PKA inhibitor PKI could partially antagonized the anti-anxiety and anti-depression effects of G-1. Taken together, we concluded that GPER activation might exhibit antidepressant and anxiolytic effect by elevating TSPO phosphorylation via protein kinase A signaling and rescuing the redox status in menopausal female rats.


Assuntos
Antidepressivos/farmacologia , Proteínas de Transporte/genética , Proteínas Quinases Dependentes de AMP Cíclico/genética , Receptores Acoplados a Proteínas G/genética , Receptores de GABA-A/genética , Animais , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Menopausa/genética , Menopausa/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Ratos , Transdução de Sinais/efeitos dos fármacos
4.
Artigo em Inglês | MEDLINE | ID: mdl-31637007

RESUMO

Activation of microglia and the subsequently elevated inflammatory cytokine release in the brain during surgery predispose individuals to cognitive dysfunction, also known as postoperative cognitive dysfunction (POCD). miR-124 is one of the most abundant microRNAs in the brain that regulates microglial function. Elucidating the role of miR-124 in microglial activation in the context of surgery may therefore promote understanding of as well as therapeutic development for post-surgical disorders involving microglial activation. The downstream targets of miR-124 were investigated using bioinformatic screening and dual-luciferase reporter assay validation, and vesicle-associated membrane protein 3 (VAMP3) was identified as a potential target. The kinetics of miR-124/VAMP3 expression was first examined in vitro in microglial cells (primary microglia and BV2 microglial cells) following lipopolysaccharide (LPS) stimulation. LPS induced a time-dependent decrease of miR-124 and upregulated the expression of VAMP3. Manipulating miR-124/VAMP3 expression by using miR-124 mimics or VAMP3-specific siRNA in LPS-stimulated BV2 microglial cells inhibited BV2 microglial activation-associated inflammatory cytokine release. To further examine the role of miR-124/VAMP3 in a surgical setting, we employed a rat surgical trauma model. Significant microglial activation and altered miR-124/VAMP3 expression were observed following surgical trauma. We also altered miR-124/VAMP3 expression in the rat surgical trauma model by administration of exogenous miR-124 and by using electroacupuncture, which is a clinically applicable treatment that modulates microglial function and minimizes postoperative disorders. We determined that electroacupuncture treatment specifically increases the expression of miR-124 in the hypothalamus and hippocampus. Increased miR-124 expression with a concomitant decrease in VAMP3 expression resulted in decreased inflammatory cytokine release related to microglial activation post-surgery. Our study indicates that miR-124/VAMP3 is involved in surgery-induced microglial activation and that targeting miR-124/VAMP3 could be a potential therapeutic strategy for postoperative disorders involving microglial activation.

5.
Neuropharmacology ; 155: 31-43, 2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31103617

RESUMO

Ghrelin is an orexigenic hormone that also plays an important role in mood disorders. Our previous studies demonstrated that ghrelin administration could protect against depression-like behaviors of chronic unpredictable mild stress (CUMS) in rodents. However, the mechanism related to the effect of ghrelin on CUMS mice has yet to be revealed. This article shows that ghrelin (5 nmol/kg/day for 2 weeks, i.p.) decreased depression-like behaviors induced by CUMS and increased hippocampal integrity (neurogenesis and spine density) measured via Ki67, 5-bromo-2-deoxyuridine (BrdU), doublecortin (DCX) labeling and Golgi-cox staining, which were decreased under CUMS. The behavioral phenotypes of Growth hormone secretagogue receptor (Ghsr)-null and wild type (WT) mice were evaluated under no stress condition and after CUMS exposure to determine the effect of Ghsr knockout on the behavioral phenotypes and stress susceptibility of mice. Ghsr-null mice exhibited depression-like behaviors under no stress condition. CUMS induced similar depression- and anxiety-like behavioral manifestations in both Ghsr-null and WT mice. A similar pattern of behavioral changes was observed after hippocampal GHSR knockdown. Additionally, both Ghsr knockout as well as CUMS exhibited deleterious effects on neurogenesis and spine density in the dentate gyrus (DG). Besides, CCK8 assay and 5-Ethynyl-2'-deoxyuridine (EdU) incorporation assay showed that ghrelin has a proliferative effect on primary cultured hippocampal neural stem cells (NSCs) and this proliferation was blocked by D-Lys3-GHRP-6 (DLS, the antagonist of GHSR, 100 µM) pretreatment. Ghrelin-induced proliferation is associated with the inhibition of G1 arrest, and this inhibition was blocked by LY294002 (specific inhibitor of PI3K, 20 µM). Furthermore, the in vivo data displayed that LY294002 (50 nmol, i.c.v.) can significantly block the antidepressant-like action of exogenous ghrelin treatment. All these results suggest that ghrelin/GHSR signaling maintains the integrity of hippocampus and has an inherent neuroprotective effect whether facing stress or not.


Assuntos
Grelina/deficiência , Hipocampo/metabolismo , Neurogênese/fisiologia , Fármacos Neuroprotetores/metabolismo , Receptores de Grelina/deficiência , Estresse Psicológico/metabolismo , Animais , Células Cultivadas , Cromonas/farmacologia , Doença Crônica , Proteína Duplacortina , Grelina/genética , Hipocampo/citologia , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Morfolinas/farmacologia , Neurogênese/efeitos dos fármacos , Receptores de Grelina/antagonistas & inibidores , Receptores de Grelina/genética , Estresse Psicológico/prevenção & controle , Estresse Psicológico/psicologia
6.
Artigo em Inglês | MEDLINE | ID: mdl-30853341

RESUMO

Ghrelin, a peptide derived from stomach, is an endogenous ligand for growth hormone secretagogue receptor (GHSR). So far, the exact role of ghrelin in depression and anxiety is still being debated. The p38 mitogen-activated protein kinase (p38-MAPK) is known to be activated in response to various stress stimuli. Thus, we hypothesize that ghrelin has an antidepressant effect, to which the p38-MAPK signaling pathway significantly contributes. To test this hypothesis, chronic social defeat stress (CSDS) was used as a model of depression. We employed the adeno-associated virus-mediated siRNA approach to down-regulate GHSR expression in the hippocampus of mice in vivo. Both ghrelin and the p38 inhibitor, SB203580, were administered to identify the effect of ghrelin on depressive-like behavior of stressed mice and to better assess the role of the p38-MAPK signaling pathway in this process. We found that CSDS activated the endogenous ghrelin-GHSR in hippocampal neurons, which possibly resulted in opposing the formation of depression- and anxiety-like behaviors in mice. Furthermore, the p38-MAPK signaling pathway had an important role in the antidepressant effect of ghrelin. Therefore, we conclude that ghrelin may reduce CSDS-induced depression- and anxiety-like behaviors via inhibiting the p38-MAPK signaling pathway in hippocampal neurons of mice.


Assuntos
Ansiolíticos/farmacologia , Antidepressivos/farmacologia , Grelina/farmacologia , Hipocampo/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Animais , Ansiedade/tratamento farmacológico , Depressão/tratamento farmacológico , Modelos Animais de Doenças , Técnicas de Silenciamento de Genes , Hipocampo/metabolismo , Imidazóis/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Piridinas/farmacologia
7.
Curr Neuropharmacol ; 17(2): 184-196, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-28925884

RESUMO

BACKGROUND: Chemotherapy-induced peripheral neuropathy (CIPN) is a progressive, enduring, and often irreversible adverse effect of many antineoplastic agents, among which sensory abnormities are common and the most suffering issues. The pathogenesis of CIPN has not been completely understood, and strategies for CIPN prevention and treatment are still open problems for medicine. OBJECTIVES: The objective of this paper is to review the mechanism-based therapies against sensory abnormities in CIPN. METHODS: This is a literature review to describe the uncovered mechanisms underlying CIPN and to provide a summary of mechanism-based therapies for CIPN based on the evidence from both animal and clinical studies. RESULTS: An abundance of compounds has been developed to prevent or treat CIPN by blocking ion channels, targeting inflammatory cytokines and combating oxidative stress. Agents such as glutathione, mangafodipir and duloxetine are expected to be effective for CIPN intervention, while Ca/Mg infusion and venlafaxine, tricyclic antidepressants, and gabapentin display limited efficacy for preventing and alleviating CIPN. And the utilization of erythropoietin, menthol and amifostine needs to be cautious regarding to their side effects. CONCLUSIONS: Multiple drugs have been used and studied for decades, their effect against CIPN are still controversial according to different antineoplastic agents due to the diverse manifestations among different antineoplastic agents and complex drug-drug interactions. In addition, novel therapies or drugs that have proven to be effective in animals require further investigation, and it will take time to confirm their efficacy and safety.


Assuntos
Antineoplásicos/efeitos adversos , Fármacos Neuroprotetores/uso terapêutico , Doenças do Sistema Nervoso Periférico/induzido quimicamente , Doenças do Sistema Nervoso Periférico/prevenção & controle , Animais , Quimioterapia Combinada , Humanos , Inflamação/complicações , Inflamação/prevenção & controle , Doenças do Sistema Nervoso Periférico/complicações , Resultado do Tratamento
8.
Brain Res ; 1710: 33-42, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30590025

RESUMO

The efficiency of remyelination determines the degree of neuronal recovery and clinical amelioration of patients with Multiple Sclerosis (MS). However, the lack of drugs facilitating myelin regeneration represents a currently unmet medical need. Herein we utilized public microarray results from the GEO database and analyzed them using Connectivity-Map, which is a database connecting diseases, genes and drugs. Through this screening, we identified Omeprazole as a potential, applicable pro-remyelinating drug candidate. Incubation of isolated primary oligodendrocyte precursor cells with omeprazole in vitro significantly promoted the differentiation and maturation of oligodendrocyte precursor cells. Employing different inhibitors of the MAPK pathway, we found that the phosphorylation of ERK1/2 and p38 MAPK is required for this effect of omeprazole. The cuprizone-induced demyelination mouse model was applied to examine the pro-remyelinating effect of omeprazole in vivo. Omeprazole treatment (10 mg/kg) for 2 weeks significantly improved the impaired motor coordinative function of demyelinated mice, increased the expression of myelin basic protein (MBP) and up-regulated the expression of genes related to remyelination. The proportion of myelinated axons was also increased after omeprazole treatment as revealed by transmission electron microscopy. Our data demonstrate that omeprazole is a promising drug candidate for remyelination in MS.


Assuntos
Oligodendroglia/efeitos dos fármacos , Omeprazol/farmacologia , Animais , Axônios/metabolismo , Diferenciação Celular/efeitos dos fármacos , Cuprizona/farmacologia , Doenças Desmielinizantes/induzido quimicamente , Reposicionamento de Medicamentos/métodos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Bainha de Mielina/metabolismo , Neurogênese/efeitos dos fármacos , Cultura Primária de Células , Ratos , Remielinização/efeitos dos fármacos , Proteínas Quinases p38 Ativadas por Mitógeno/efeitos dos fármacos , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
9.
Front Mol Neurosci ; 11: 149, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29946236

RESUMO

Depression is the second leading cause of disability worldwide. The effects of clinical depression may be mediated by neuroinflammation such as activation of microglia and high levels of proinflammatory cytokines in certain brain areas. Traditional Chinese medicine techniques such as electro-acupuncture (EA) are used extensively in Asia to treat mental health disorders. However, EA has not been rigorously studied in treatment of depression. This study was designed to assess the effectiveness of EA on depressive-like behavior and explore the role of hippocampal neuroinflammation in the potential antidepressant effect of EA. In this study, we used six chronic unpredictable stressors daily in a random sequence for 10 weeks. EA were performed on "Bai-Hui" (Du-20) (+) and "Yang-Ling-Quan" (GB-34, the right side; -) acupoints by an EA apparatus (HANS Electronic Apparatus, LH202H, 2/100 Hz, 0.3 mA) for 30 min once every other day for last 4 weeks. The behavior tests including open field test and forced swimming test, which are widely used to assess depressive and anxiety-like behavior were performed on the Monday and Tuesday of the eleventh week. The results showed that 10 week of chronic unpredictable stress (CUS) caused behavioral deficits in rats and neuroinflammation in hippocampus, such as increased expression of NLRP3 inflammasome components, upregulated mRNA level of IL-1ß and the protein level of IL-1ß mature form (p17) and activation of microglia. Moreover, 4 weeks of EA treatment significantly attenuated behavioral deficits caused by CUS. EA's antidepressant effect was accompanied by markedly decreased expression of certain NLRP3 inflammasome components and matured IL-1ß. Meanwhile, EA treatment can significantly reverse CUS-induced increases in P2X7 receptor, Iba-1, IL-18, TNFα and IL-6 expression and decreases in GFAP expression. In conclusion, EA exhibited the antidepressant effect and alleviated the hippocampal neuroinflammation. These findings may provide insight into the role of hippocampal neuroinflammation in the antidepressant effect of EA.

10.
Brain Behav Immun ; 68: 132-145, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29051087

RESUMO

Chemotherapy-induced peripheral neuropathy (CIPN) is a common adverse side effect of many antineoplastic agents. Patients treated with chemotherapy often report pain and paresthesias in a "glove-and-stocking" distribution. Diverse mechanisms contribute to the development and maintenance of CIPN. However, the role of spinal microglia in CIPN is not completely understood. In this study, cisplatin-treated mice displayed persistent mechanical allodynia, sensory deficits and decreased density of intraepidermal nerve fibers (IENFs). In the spinal cord, activation of microglia, but not astrocyte, was persistently observed until week five after the first cisplatin injection. Additionally, mRNA levels of inflammation related molecules including IL-1ß, IL-6, tumor necrosis factor (TNF)-α, inducible nitric oxide synthase (iNOS) and CD16, were increased after cisplatin treatment. Intraperitoneal (i.p.) or intrathecal (i.t.) injection with minocycline both alleviated cisplatin-induced mechanical allodynia and sensory deficits, and prevented IENFs loss. Furthermore, cisplatin enhanced triggering receptor expressed on myeloid cells 2 (TREM2) /DNAX-activating protein of 12 kDa (DAP12) signaling in the spinal cord microglia. The blockage of TREM2 by i.t. injecting anti-TREM2 neutralizing antibody significantly attenuated cisplatin-induced mechanical allodynia, sensory deficits and IENFs loss. Meanwhile, anti-TREM2 neutralizing antibody prominently suppressed the spinal IL-6, TNF-α, iNOS and CD16 mRNA level, but it dramatically up-regulated the anti-inflammatory cytokines IL-4 and IL-10. The data demonstrated that cisplatin triggered persistent activation of spinal cord microglia through strengthening TREM2/DAP12 signaling, which further resulted in CIPN. Functional blockage of TREM2 or inhibition of microglia both benefited for cisplatin-induced peripheral neuropathy. Microglial TREM2/DAP12 may serve as a potential target for CIPN intervention.


Assuntos
Glicoproteínas de Membrana/metabolismo , Doenças do Sistema Nervoso Periférico/imunologia , Doenças do Sistema Nervoso Periférico/metabolismo , Receptores Imunológicos/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Astrócitos/metabolismo , Cisplatino/efeitos adversos , Citocinas/metabolismo , Modelos Animais de Doenças , Hiperalgesia/metabolismo , Interleucina-10/metabolismo , Interleucina-1beta/metabolismo , Interleucina-4/metabolismo , Interleucina-6/metabolismo , Ativação de Macrófagos , Masculino , Glicoproteínas de Membrana/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Microglia/metabolismo , Microglia/fisiologia , Minociclina/farmacologia , Óxido Nítrico Sintase Tipo II/metabolismo , Dor/metabolismo , Receptores de IgG/metabolismo , Receptores Imunológicos/fisiologia , Transdução de Sinais , Medula Espinal/patologia , Medula Espinal/fisiologia , Fator de Necrose Tumoral alfa/metabolismo
11.
Front Mol Neurosci ; 10: 308, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29021740

RESUMO

Electroacupuncture (EA) could improve the hyperactivity of the hypothalamus pituitary adrenal (HPA) axis induced by hepatectomy. However, its underlying mechanism still remains largely unclear. Here, we found that hypothalamic corticotrophin releasing hormone (CRH) modulates the function of the HPA axis, while hepatectomy induced an HPA axis disorder and EA application could regulate the hypothalamic CRH. We first demonstrated that microRNAs (miRNAs) target on CRH via bioinformatics analysis and screened them in the primary hypothalamic neurons. MicroR-142 (miR-142) and miR-376c were identified to inhibit CRH at the mRNA and protein levels, and a dual luciferase reporter assay confirmed their binding to the 3'-untranslated regions (3'-UTR) of CRH. Further analyses revealed a decrease in hypothalamic miR-142 expression in the hepatectomy rats and an increase in miR-142 and miR-376c after EA intervention. Importantly, the improvement effect of EA on the HPA axis regulatory function in hepatectomy rats was blocked by miR-142 antagomir. Our findings illustrated that EA could up-regulate hypothalamic miR-142 expression and decrease the CRH level to alleviate the hyperactivity of the HPA axis induced by hepatectomy.

12.
Front Neurosci ; 11: 287, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28588443

RESUMO

While social stress exposure is a common risk factor for affective disorders, most individuals exposed to it can maintain normal physical and psychological functioning. However, factors that determine susceptibility vs. resilience to social stress remain unclear. Here, the resident-intruder model of social defeat was used as a social stressor in male C57BL/6J mice to investigate the difference between susceptibility and resilience. As depression is often characterized by hyperactivity of the hypothalamic-pituitary-adrenal (HPA) axis, we conducted the present study to further investigate the individual differences in the HPA axis response and glucocorticoid receptor (GR) protein expression and translocation between susceptible mice and resilient mice. We found that hypercortisolemia, induced by social defeat stress occurred in susceptible mice, but not in resilient mice. Moreover, susceptible mice exhibited significantly less GR protein expression and nuclear translocation in the hippocampus than resilient mice. Treatment with escitalopram could decrease the serum corticosterone (CORT), increase GR protein expression as well as nuclear translocation in the hippocampus and ultimately reverse social withdrawal behaviors in susceptible mice. These results indicate that the up-regulation of GR and the enhancement of GR nuclear translocation in the hippocampus play an important role in resilience to chronic social defeat stress.

13.
J Neuroinflammation ; 14(1): 102, 2017 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-28486969

RESUMO

BACKGROUND: In recent years, proinflammatory cytokine interleukin-1ß (IL-1ß) was considered to play a critical role in the pathogenesis of depression. In addition, P2X7 receptor (P2X7R), a member of the purinergic receptor family, which is predominantly present on microglia, as well as on astrocytes and neurons in lesser amounts in the central nervous system, was suggested to be involved in the processing and releasing of IL-1ß. Here, we investigated the role of P2X7R in the pathogenesis of depression. METHODS: Male Sprague-Dawley rats were subjected to chronic unpredictable stressors (CUS) for 3 weeks. At the end of week 1, 2, and 3, extracellular ATP, caspase 1, IL-1ß, and components and activation of NLRP3 inflammasome (nucleotide-binding, leucine-rich repeat, pyrin domain containing 3) were evaluated as biomarker of neuroinflammation. In separate experiments, the rats were microinjected with P2X7R agonists ATP, BzATP, and saline into the hippocampus, respectively, or exposed to CUS combined with hippocampal microinjection with P2X7R antagonist, BBG and A438079, and saline, respectively, for 3 weeks, followed by exposed to forced swimming test and open-field test. Moreover, we also evaluated the depressive and anxiety-like behavior of P2X7-null mice in forced swimming test, open-field test, and elevated plus maze. RESULTS: Along with stress accumulation, extracellular ATP, cleaved-caspase 1, IL-1ß, and ASC were significantly enhanced in the hippocampus, but P2X7R and NLRP3 were not. Immunoprecipitation assay indicated that along with the accumulation of stress, assembly of NLRP3 inflammasome and cleaved caspase 1 in NLRP3 inflammasome were significantly increased. Moreover, antagonists of P2X7R, either BBG or A438079, prevented the development of depressive-like behaviors induced by chronic unpredictable stress in rats. Meanwhile, we could not observe any depressive-like or anxiety-like behaviors of P2X7-null mice after they had been exposed to CUS. The results implied that P2X7 knockout could impede the development of depressive-like and anxiety-like behaviors induced by CUS. In contrast, chronic administration of agonists of P2X7R, either ATP or BzATP, could induce depressive-like behaviors. CONCLUSIONS: The activation of P2X7R and subsequent NLRP3 inflammasome in hippocampal microglial cells could mediate depressive-like behaviors, which suggests a new therapeutic target for the prevention and treatment of depression.


Assuntos
Depressão/etiologia , Depressão/patologia , Hipocampo/patologia , Proteínas do Tecido Nervoso/metabolismo , Neuroglia/metabolismo , Receptores Purinérgicos P2X7/metabolismo , Estresse Psicológico/complicações , Trifosfato de Adenosina/metabolismo , Trifosfato de Adenosina/farmacologia , Animais , Modelos Animais de Doenças , Comportamento Exploratório/fisiologia , Privação de Alimentos , Temperatura Alta/efeitos adversos , Masculino , Neuroglia/efeitos dos fármacos , Antagonistas do Receptor Purinérgico P2X/farmacologia , Piridinas/farmacologia , Ratos , Ratos Sprague-Dawley , Ratos Transgênicos , Receptores Purinérgicos P2X7/genética , Estresse Psicológico/etiologia , Natação/psicologia , Tetrazóis/farmacologia , Privação de Água
14.
Int J Mol Med ; 40(1): 90-100, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28498394

RESUMO

Exposure to trauma is a potential contributor to anxiety; however, the molecular mechanisms responsible for trauma-induced anxiety require further clarification. In this study, in an aim to explore these mechanisms, we observed the changes in the hypothalamic pituitary adrenal (HPA) axis using a radioimmunoassay and the changes in anxiety-like behavior using the open field test and elevated plus maze test in a rat model following intervention with NBI­27914, a specific corticotropin­releasing hormone receptor 1 (CRHR1) antagonist. CRHR1 was found to be involved in trauma­induced anxiety. We then applied bioinformatic analysis to screen microRNAs (miRNAs or miRs) that target CRHR1, and miR­34b was determined to negatively regulate CRHR1 mRNA in primary hypothalamic neurons. The overexpression of miR­34b in the paraventricular nucleus (PVN) by a miRNA agomir using a drug delivery system decreased the hyperactivity of the HPA axis and anxiety­like behavior. Overall, the involvement of the HPA axis in trauma­induced anxiety was demonstrated, and trauma-induced anxiety was attenuated by decreasing the hyperactivity of the HPA axis via miR­34b by targeting CRHR1.


Assuntos
Ansiedade/metabolismo , Comportamento Animal , Regulação da Expressão Gênica , MicroRNAs/biossíntese , Núcleo Hipotalâmico Paraventricular/metabolismo , Receptores de Hormônio Liberador da Corticotropina/biossíntese , Ferimentos e Lesões/metabolismo , Compostos de Anilina/farmacologia , Animais , Ansiedade/etiologia , Ansiedade/fisiopatologia , Masculino , Núcleo Hipotalâmico Paraventricular/fisiopatologia , Pirimidinas/farmacologia , Ratos , Ratos Sprague-Dawley , Ferimentos e Lesões/complicações , Ferimentos e Lesões/fisiopatologia
15.
Behav Brain Res ; 326: 33-43, 2017 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-28245976

RESUMO

As a regulator of food intake, ghrelin also plays a key role in mood disorders. Previous studies reported that acute ghrelin administration defends against depressive symptoms of chronic stress. However, the effects of long-term ghrelin on rodents under chronic stress hasn't been revealed. In this study, we found chronic peripheral administration of ghrelin (5nmol/kg/day for 2 weeks, i.p.) could alleviate anxiety- and depression-like behaviors induced by chronic unpredictable mild stress (CUMS). The depression-like behaviors were assessed by the forced swimming test (FST), and anxiety-like behaviors were assessed by the open field test (OFT) and the elevated plus maze test (EPM). Meanwhile, we observed that peripheral acylated ghrelin, together with gastral and hippocampal ghrelin prepropeptide mRNA level, were significantly up-regulated in CUMS mice. Besides, the increased protein level of growth hormone secretagogue receptor (GHSR) in hippocampus were also detected. These results suggested that the endogenous ghrelin/GHSR pathway activated by CUMS plays a role in homeostasis. Further results showed that central treatment of ghrelin (10µg/rat/day for 2 weeks, i.c.v.) or GHRP-6 (the agonist of GHSR, 10µg/rat/day for 2 weeks, i.c.v.) significantly alleviated the depression-like behaviors induced by CUMS in FST and sucrose preference test (SPT). Based on these results, we concluded that central GHSR is involved in the antidepressant-like effect of exogenous ghrelin treatment, and ghrelin/GHSR may have the inherent neuromodulatory properties against depressive symptoms.


Assuntos
Ansiedade/tratamento farmacológico , Comportamento Animal , Depressão/tratamento farmacológico , Grelina/metabolismo , Grelina/farmacologia , Hipocampo/metabolismo , Oligopeptídeos/farmacologia , Receptores de Grelina/metabolismo , Estresse Psicológico/metabolismo , Animais , Ansiedade/etiologia , Comportamento Animal/efeitos dos fármacos , Depressão/etiologia , Grelina/administração & dosagem , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Oligopeptídeos/administração & dosagem , Ratos , Ratos Sprague-Dawley , Receptores de Grelina/agonistas , Estresse Psicológico/complicações
16.
Sci Rep ; 6: 28956, 2016 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-27381056

RESUMO

Curcumin has been shown to possess strong anti-inflammatory activity in many diseases. It has been demonstrated that the janus kinase 2 (JAK2)-signal transducer and activator of transcription 3 (STAT3) cascade and the NAcht leucine-rich-repeat protein 1 (NALP1) inflammasome are important for the synthesis of Pro-Interleukin (IL)-1ß and the processing of the inactive protein to its mature form, which plays an active role in the pathogenesis of neuropathic pain. The present study showed that repeated intraperitoneal injection of curcumin ameliorated SNI-induced mechanical and cold allodynia in a dose-dependent manner and inhibited the elevation of spinal mature IL-1ß protein levels. Additionally, repeated curcumin treatment significantly inhibited the aggregation of the NALP1 inflammasome and the activation of the JAK2-STAT3 cascade in spinal astrocytes. Furthermore, the genetic down-regulation of NALP1 inflammasome activation by NALP1 siRNA and the pharmacological inhibition of the JAK2-STAT3 cascade by AG490 markedly inhibited IL-1ß maturation and Pro-IL-1ß synthesis, respectively, and reduced SNI-induced pain hypersensitivity. Our results suggest that curcumin attenuated neuropathic pain and down-regulated the production of spinal mature IL-1ß by inhibiting the aggregation of NALP1 inflammasome and the activation of the JAK2-STAT3 cascade in astrocytes.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Reguladoras de Apoptose/metabolismo , Curcumina/farmacologia , Regulação para Baixo/efeitos dos fármacos , Interleucina-1beta/metabolismo , Janus Quinase 2/metabolismo , Neuralgia/tratamento farmacológico , Fator de Transcrição STAT3/metabolismo , Animais , Hiperalgesia/metabolismo , Inflamassomos/metabolismo , Masculino , Camundongos Endogâmicos BALB C , Neuralgia/metabolismo , Transdução de Sinais/efeitos dos fármacos , Medula Espinal/efeitos dos fármacos , Medula Espinal/metabolismo
17.
Neurosci Bull ; 32(1): 92-8, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26781876

RESUMO

To mimic human mood disorders, traditional chronic stresses and social defeat stress have been developed and widely applied. However, these active stresses do not mimic the emotional flaws induced by stresses, and their input levels vary greatly. Also, emotional stresses resulting from social unobtainability remain largely elusive due to the lack of useful animal models. In this study, we developed a mouse model named "opposite sex contact and isolation" (OSCI) and found that OSCI induced significant social avoidance, anhedonia, and anxiety. These behavioral defects developed differently after 7 days of OSCI. The social avoidance behavior was self-curable while anxiety gradually worsened but was alleviated by re-pairing with the same female partner. Corresponding to the behavior changes, the plasma corticosterone and phosphorylated cAMP response element binding protein levels were decreased in the nucleus accumbens of the mice that experienced isolation. Together, this study has developed a novel strategy for depression/anxiety modeling and shows that OSCI may be a useful tool for studying the lovelorn/lovesick type of depression.


Assuntos
Ansiedade/etiologia , Depressão/etiologia , Modelos Animais de Doenças , Isolamento Social/psicologia , Animais , Ansiedade/psicologia , Comportamento Animal , Corticosterona/sangue , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/biossíntese , Depressão/psicologia , Feminino , Imunofluorescência , Masculino , Aprendizagem em Labirinto , Camundongos , Camundongos Endogâmicos C57BL , Núcleo Accumbens/metabolismo
18.
Front Neurosci ; 10: 613, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28119561

RESUMO

Promoting remyelination is crucial for patients with demyelinating diseases including multiple sclerosis. However, it is still a circuitous conundrum finding a practical remyelinating therapy. Electroacupuncture (EA), originating from traditional Chinese medicine (TCM), has been widely used to treat CNS diseases all over the world, but the role of EA in demyelinating diseases is barely known. In this study, we examined the remyelinating properties and mechanisms of EA in cuprizone-induced demyelinating model, a CNS demyelinating murine model of multiple sclerosis. By feeding C57BL/6 mice with chow containing 0.2% cuprizone for 5 weeks, we successfully induce demyelination as proved by weight change, beam test, pole test, histomorphology, and Western Blot. EA treatment significantly improves the neurobehavioral performance at week 7 (2 weeks after withdrawing cuprizone chow). RNA-seq and RT-PCR results reveal up-regulated expression of myelin-related genes, and the expression of myelin associated protein (MBP, CNPase, and O4) are also increased after EA treatment, indicating therapeutic effect of EA on cuprizone model. It is widely acknowledged that microglia exert phagocytic effect on degraded myelin debris and clear these detrimental debris, which is a necessary process for subsequent remyelination. We found the remyelinating effect of EA is associated with enhanced clearance of degraded myelin debris as detected by dMBP staining and red oil O staining. Our further studies suggest that more microglia assemble in demyelinating area (corpus callosum) during the process of EA treatment, and cells inside corpus callosum are mostly in a plump, ameboid, and phagocytic shape, quite different from the ramified cells outside corpus callosum. RNA-seq result also unravels that most genes relating to positive regulation of phagocytosis (GO:0050766) are up-regulated, indicating enhanced phagocytic process after EA treatment. During the process of myelin debris clearance, microglia tend to change their phenotype toward M2 phenotype. Thus, we also probed into the phenotype of microglia in our study. Immuno-staining results show increased expression of CD206 and Arg1, and the ratio of CD206/CD16/32 are also higher in EA group. In conclusion, these results demonstrate for the first time that EA enhances myelin debris removal from activated microglia after demyelination, and promotes remyelination.

19.
Neuromodulation ; 19(5): 498-506, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26573696

RESUMO

OBJECTIVE: The study aims to know the effect of electroacupuncture (EA) in maintenance of the homeostasis of the neuroendocrine system in hepatectomy rats and the involvement of arginine vasopressin (AVP) signaling in hypothalamus after EA was observed. MATERIALS AND METHODS: Rats were randomly assigned to four groups, including the intact group, model group, sham-EA group, and EA group. EA was given during the perioperative period at the Zusanli (ST36) and Sanyinjiao (SP6) points after hepatectomy. The serum adrenocorticotropic hormone (ACTH) and corticosterone (CORT) levels were detected via radioimmunoassay. The expression of AVP, arginine vasopressin receptor 1a (AVPR1a), arginine vasopressin receptor 1b (AVPR1b), and glucocorticoid receptor (GR) was detected by Western blot after surgery. RESULTS: Compared with the intact group, the ACTH and CORT levels in the serum of model group were increased, whereas the ACTH and CORT levels were decreased in the EA group compared with the model group. Moreover, AVP and AVPR1b protein levels in the pituitary gland were increased in the model group and decreased in the EA group. Further, a distinct increase in the AVP and AVPR1a protein levels was observed in the model group, whereas they were significantly decreased in the EA group. Blockade of AVPR1b by nelivaptan reduced the increase of ACTH and CORT. D [Leu(4) , Lys(8) ] vasopressin can inhibit the effect of EA in rectification of the hyperactivity of the hypothalamic-pituitary-adrenal (HPA) axis. CONCLUSIONS: EA application at ST36 and SP6 can ameliorate the hyperactivity of the HPA axis via AVP signaling during the perioperative period.


Assuntos
Arginina Vasopressina/metabolismo , Eletroacupuntura/métodos , Regulação da Expressão Gênica/fisiologia , Hepatectomia , Hipercinese/terapia , Sistema Hipotálamo-Hipofisário/metabolismo , Receptores de Vasopressinas/metabolismo , Pontos de Acupuntura , Hormônio Adrenocorticotrópico/sangue , Análise de Variância , Animais , Arginina Vasopressina/genética , Arginina Vasopressina/farmacologia , Corticosterona/sangue , Modelos Animais de Doenças , Regulação da Expressão Gênica/efeitos dos fármacos , Hepatectomia/efeitos adversos , Hipercinese/etiologia , Camundongos , Neuropeptídeos , RNA Mensageiro/metabolismo , Radioimunoensaio , Ratos , Ratos Sprague-Dawley , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo , Receptores de Vasopressinas/genética , Transdução de Sinais/efeitos dos fármacos
20.
Artigo em Inglês | MEDLINE | ID: mdl-26649065

RESUMO

Cancer-induced bone pain (CIBP) is a severe type of chronic pain. It is imperative to explore safe and effective analgesic drugs for CIBP treatment. Baicalein (BE), isolated from the traditional Chinese herbal medicine Scutellaria baicalensis Georgi (or Huang Qin), has been demonstrated to have anti-inflammatory and neuroprotective effects. In this study, we examined the effect of BE on CIBP and the mechanism of this effect. Intrathecal and oral administration of BE at different doses could alleviate the mechanical allodynia in CIBP rats. Intrathecal 100 µg BE could inhibit the production of IL-6 and TNF-α in the spinal cord of CIBP rats. Moreover, intrathecal 100 µg BE could effectively inhibit the activation of p-p38 and p-JNK MAPK signals in CIBP rats. The analgesic effect of BE may be associated with the inhibition of the expression of the inflammatory cytokines IL-6 and TNF-α and through the activation of p-p38 and p-JNK MAPK signals in the spinal cord. These findings suggest that BE is a promising novel analgesic agent for CIBP.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...