Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 290(33): 20044-59, 2015 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-26085101

RESUMO

Insulin-degrading enzyme (IDE, insulysin) is the best characterized catabolic enzyme implicated in proteolysis of insulin. Recently, a peptide inhibitor of IDE has been shown to affect levels of insulin, amylin, and glucagon in vivo. However, IDE(-/-) mice display variable phenotypes relating to fasting plasma insulin levels, glucose tolerance, and insulin sensitivity depending on the cohort and age of animals. Here, we interrogated the importance of IDE-mediated catabolism on insulin clearance in vivo. Using a structure-based design, we linked two newly identified ligands binding at unique IDE exosites together to construct a potent series of novel inhibitors. These compounds do not interact with the catalytic zinc of the protease. Because one of these inhibitors (NTE-1) was determined to have pharmacokinetic properties sufficient to sustain plasma levels >50 times its IDE IC50 value, studies in rodents were conducted. In oral glucose tolerance tests with diet-induced obese mice, NTE-1 treatment improved the glucose excursion. Yet in insulin tolerance tests and euglycemic clamp experiments, NTE-1 did not enhance insulin action or increase plasma insulin levels. Importantly, IDE inhibition with NTE-1 did result in elevated plasma amylin levels, suggesting the in vivo role of IDE action on amylin may be more significant than an effect on insulin. Furthermore, using the inhibitors described in this report, we demonstrate that in HEK cells IDE has little impact on insulin clearance. In total, evidence from our studies supports a minimal role for IDE in insulin metabolism in vivo and suggests IDE may be more important in helping regulate amylin clearance.


Assuntos
Inibidores Enzimáticos/farmacologia , Insulina/metabolismo , Insulisina/antagonistas & inibidores , Animais , Sítios de Ligação , Cristalografia por Raios X , Inibidores Enzimáticos/farmacocinética , Células HEK293 , Humanos , Insulisina/química , Modelos Moleculares , Proteólise
2.
Mol Pharmacol ; 76(6): 1211-9, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19767451

RESUMO

Successful development of 5-HT(2C) agonists requires selectivity versus the highly homologous 5-HT(2A) receptor, because agonism at this receptor can result in significant adverse events. (R)-9-Ethyl-1,3,4,10b-tetrahydro-7-trifluoromethylpyrazino[2,1-a]isoindol-6(2H)-one (compound 1) is a potent 5-HT(2C) agonist exhibiting selectivity over the human 5-HT(2A) receptor. Evaluation of the compound at the rat 5-HT(2A) receptor, however, revealed potent binding and agonist functional activity. The physiological consequence of this higher potency was the observation of a significant increase in blood pressure in conscious telemeterized rats that could be prevented by ketanserin. Docking of compound 1 in a homology model of the 5-HT(2A) receptor indicated a possible binding mode in which the ethyl group at the 9-position of the molecule was oriented toward position 5.46 of the 5-HT(2A) receptor. Within the human 5-HT(2A) receptor, position 5.46 is Ser242; however, in the rat 5-HT(2A) receptor, it is Ala242, suggesting that the potent functional activity in this species resulted from the absence of the steric bulk provided by the -OH moiety of the Ser in the human isoform. We confirmed this hypothesis using site-directed mutagenesis through the mutation of both the human receptor Ser242 to Ala and the rat receptor Ala242 to Ser, followed by radioligand binding and second messenger studies. In addition, we attempted to define the space allowed by the alanine by evaluating compounds with larger substitutions at the 9-position. The data indicate that position 5.46 contributed to the species difference in 5-HT(2A) receptor potency observed for a pyrazinoisoindolone compound, resulting in the observation of a significant cardiovascular safety signal.


Assuntos
Isoindóis/farmacologia , Pirazinas/farmacologia , Agonistas do Receptor 5-HT2 de Serotonina , Animais , Ligação Competitiva/efeitos dos fármacos , Pressão Sanguínea/efeitos dos fármacos , Cálcio/metabolismo , Linhagem Celular , Cães , Variação Genética , Humanos , Isoindóis/metabolismo , Ketanserina/farmacologia , Macaca fascicularis , Masculino , Atividade Motora/efeitos dos fármacos , Mutagênese Sítio-Dirigida , Ligação Proteica/efeitos dos fármacos , Pirazinas/metabolismo , Ratos , Ratos Sprague-Dawley , Receptor 5-HT2A de Serotonina/efeitos dos fármacos , Receptor 5-HT2A de Serotonina/metabolismo , Receptor 5-HT2C de Serotonina/genética , Receptor 5-HT2C de Serotonina/fisiologia , Homologia de Sequência de Aminoácidos , Antagonistas da Serotonina/farmacologia , Especificidade da Espécie , Homologia Estrutural de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...